This file is indexed.

/usr/lib/python2.7/dist-packages/numpy/lib/scimath.py is in python-numpy 1:1.12.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
"""
Wrapper functions to more user-friendly calling of certain math functions
whose output data-type is different than the input data-type in certain
domains of the input.

For example, for functions like `log` with branch cuts, the versions in this
module provide the mathematically valid answers in the complex plane::

  >>> import math
  >>> from numpy.lib import scimath
  >>> scimath.log(-math.exp(1)) == (1+1j*math.pi)
  True

Similarly, `sqrt`, other base logarithms, `power` and trig functions are
correctly handled.  See their respective docstrings for specific examples.

"""
from __future__ import division, absolute_import, print_function

import numpy.core.numeric as nx
import numpy.core.numerictypes as nt
from numpy.core.numeric import asarray, any
from numpy.lib.type_check import isreal


__all__ = [
    'sqrt', 'log', 'log2', 'logn', 'log10', 'power', 'arccos', 'arcsin',
    'arctanh'
    ]


_ln2 = nx.log(2.0)


def _tocomplex(arr):
    """Convert its input `arr` to a complex array.

    The input is returned as a complex array of the smallest type that will fit
    the original data: types like single, byte, short, etc. become csingle,
    while others become cdouble.

    A copy of the input is always made.

    Parameters
    ----------
    arr : array

    Returns
    -------
    array
        An array with the same input data as the input but in complex form.

    Examples
    --------

    First, consider an input of type short:

    >>> a = np.array([1,2,3],np.short)

    >>> ac = np.lib.scimath._tocomplex(a); ac
    array([ 1.+0.j,  2.+0.j,  3.+0.j], dtype=complex64)

    >>> ac.dtype
    dtype('complex64')

    If the input is of type double, the output is correspondingly of the
    complex double type as well:

    >>> b = np.array([1,2,3],np.double)

    >>> bc = np.lib.scimath._tocomplex(b); bc
    array([ 1.+0.j,  2.+0.j,  3.+0.j])

    >>> bc.dtype
    dtype('complex128')

    Note that even if the input was complex to begin with, a copy is still
    made, since the astype() method always copies:

    >>> c = np.array([1,2,3],np.csingle)

    >>> cc = np.lib.scimath._tocomplex(c); cc
    array([ 1.+0.j,  2.+0.j,  3.+0.j], dtype=complex64)

    >>> c *= 2; c
    array([ 2.+0.j,  4.+0.j,  6.+0.j], dtype=complex64)

    >>> cc
    array([ 1.+0.j,  2.+0.j,  3.+0.j], dtype=complex64)
    """
    if issubclass(arr.dtype.type, (nt.single, nt.byte, nt.short, nt.ubyte,
                                   nt.ushort, nt.csingle)):
        return arr.astype(nt.csingle)
    else:
        return arr.astype(nt.cdouble)

def _fix_real_lt_zero(x):
    """Convert `x` to complex if it has real, negative components.

    Otherwise, output is just the array version of the input (via asarray).

    Parameters
    ----------
    x : array_like

    Returns
    -------
    array

    Examples
    --------
    >>> np.lib.scimath._fix_real_lt_zero([1,2])
    array([1, 2])

    >>> np.lib.scimath._fix_real_lt_zero([-1,2])
    array([-1.+0.j,  2.+0.j])

    """
    x = asarray(x)
    if any(isreal(x) & (x < 0)):
        x = _tocomplex(x)
    return x

def _fix_int_lt_zero(x):
    """Convert `x` to double if it has real, negative components.

    Otherwise, output is just the array version of the input (via asarray).

    Parameters
    ----------
    x : array_like

    Returns
    -------
    array

    Examples
    --------
    >>> np.lib.scimath._fix_int_lt_zero([1,2])
    array([1, 2])

    >>> np.lib.scimath._fix_int_lt_zero([-1,2])
    array([-1.,  2.])
    """
    x = asarray(x)
    if any(isreal(x) & (x < 0)):
        x = x * 1.0
    return x

def _fix_real_abs_gt_1(x):
    """Convert `x` to complex if it has real components x_i with abs(x_i)>1.

    Otherwise, output is just the array version of the input (via asarray).

    Parameters
    ----------
    x : array_like

    Returns
    -------
    array

    Examples
    --------
    >>> np.lib.scimath._fix_real_abs_gt_1([0,1])
    array([0, 1])

    >>> np.lib.scimath._fix_real_abs_gt_1([0,2])
    array([ 0.+0.j,  2.+0.j])
    """
    x = asarray(x)
    if any(isreal(x) & (abs(x) > 1)):
        x = _tocomplex(x)
    return x

def sqrt(x):
    """
    Compute the square root of x.

    For negative input elements, a complex value is returned
    (unlike `numpy.sqrt` which returns NaN).

    Parameters
    ----------
    x : array_like
       The input value(s).

    Returns
    -------
    out : ndarray or scalar
       The square root of `x`. If `x` was a scalar, so is `out`,
       otherwise an array is returned.

    See Also
    --------
    numpy.sqrt

    Examples
    --------
    For real, non-negative inputs this works just like `numpy.sqrt`:

    >>> np.lib.scimath.sqrt(1)
    1.0
    >>> np.lib.scimath.sqrt([1, 4])
    array([ 1.,  2.])

    But it automatically handles negative inputs:

    >>> np.lib.scimath.sqrt(-1)
    (0.0+1.0j)
    >>> np.lib.scimath.sqrt([-1,4])
    array([ 0.+1.j,  2.+0.j])

    """
    x = _fix_real_lt_zero(x)
    return nx.sqrt(x)

def log(x):
    """
    Compute the natural logarithm of `x`.

    Return the "principal value" (for a description of this, see `numpy.log`)
    of :math:`log_e(x)`. For real `x > 0`, this is a real number (``log(0)``
    returns ``-inf`` and ``log(np.inf)`` returns ``inf``). Otherwise, the
    complex principle value is returned.

    Parameters
    ----------
    x : array_like
       The value(s) whose log is (are) required.

    Returns
    -------
    out : ndarray or scalar
       The log of the `x` value(s). If `x` was a scalar, so is `out`,
       otherwise an array is returned.

    See Also
    --------
    numpy.log

    Notes
    -----
    For a log() that returns ``NAN`` when real `x < 0`, use `numpy.log`
    (note, however, that otherwise `numpy.log` and this `log` are identical,
    i.e., both return ``-inf`` for `x = 0`, ``inf`` for `x = inf`, and,
    notably, the complex principle value if ``x.imag != 0``).

    Examples
    --------
    >>> np.emath.log(np.exp(1))
    1.0

    Negative arguments are handled "correctly" (recall that
    ``exp(log(x)) == x`` does *not* hold for real ``x < 0``):

    >>> np.emath.log(-np.exp(1)) == (1 + np.pi * 1j)
    True

    """
    x = _fix_real_lt_zero(x)
    return nx.log(x)

def log10(x):
    """
    Compute the logarithm base 10 of `x`.

    Return the "principal value" (for a description of this, see
    `numpy.log10`) of :math:`log_{10}(x)`. For real `x > 0`, this
    is a real number (``log10(0)`` returns ``-inf`` and ``log10(np.inf)``
    returns ``inf``). Otherwise, the complex principle value is returned.

    Parameters
    ----------
    x : array_like or scalar
       The value(s) whose log base 10 is (are) required.

    Returns
    -------
    out : ndarray or scalar
       The log base 10 of the `x` value(s). If `x` was a scalar, so is `out`,
       otherwise an array object is returned.

    See Also
    --------
    numpy.log10

    Notes
    -----
    For a log10() that returns ``NAN`` when real `x < 0`, use `numpy.log10`
    (note, however, that otherwise `numpy.log10` and this `log10` are
    identical, i.e., both return ``-inf`` for `x = 0`, ``inf`` for `x = inf`,
    and, notably, the complex principle value if ``x.imag != 0``).

    Examples
    --------

    (We set the printing precision so the example can be auto-tested)

    >>> np.set_printoptions(precision=4)

    >>> np.emath.log10(10**1)
    1.0

    >>> np.emath.log10([-10**1, -10**2, 10**2])
    array([ 1.+1.3644j,  2.+1.3644j,  2.+0.j    ])

    """
    x = _fix_real_lt_zero(x)
    return nx.log10(x)

def logn(n, x):
    """
    Take log base n of x.

    If `x` contains negative inputs, the answer is computed and returned in the
    complex domain.

    Parameters
    ----------
    n : int
       The base in which the log is taken.
    x : array_like
       The value(s) whose log base `n` is (are) required.

    Returns
    -------
    out : ndarray or scalar
       The log base `n` of the `x` value(s). If `x` was a scalar, so is
       `out`, otherwise an array is returned.

    Examples
    --------
    >>> np.set_printoptions(precision=4)

    >>> np.lib.scimath.logn(2, [4, 8])
    array([ 2.,  3.])
    >>> np.lib.scimath.logn(2, [-4, -8, 8])
    array([ 2.+4.5324j,  3.+4.5324j,  3.+0.j    ])

    """
    x = _fix_real_lt_zero(x)
    n = _fix_real_lt_zero(n)
    return nx.log(x)/nx.log(n)

def log2(x):
    """
    Compute the logarithm base 2 of `x`.

    Return the "principal value" (for a description of this, see
    `numpy.log2`) of :math:`log_2(x)`. For real `x > 0`, this is
    a real number (``log2(0)`` returns ``-inf`` and ``log2(np.inf)`` returns
    ``inf``). Otherwise, the complex principle value is returned.

    Parameters
    ----------
    x : array_like
       The value(s) whose log base 2 is (are) required.

    Returns
    -------
    out : ndarray or scalar
       The log base 2 of the `x` value(s). If `x` was a scalar, so is `out`,
       otherwise an array is returned.

    See Also
    --------
    numpy.log2

    Notes
    -----
    For a log2() that returns ``NAN`` when real `x < 0`, use `numpy.log2`
    (note, however, that otherwise `numpy.log2` and this `log2` are
    identical, i.e., both return ``-inf`` for `x = 0`, ``inf`` for `x = inf`,
    and, notably, the complex principle value if ``x.imag != 0``).

    Examples
    --------
    We set the printing precision so the example can be auto-tested:

    >>> np.set_printoptions(precision=4)

    >>> np.emath.log2(8)
    3.0
    >>> np.emath.log2([-4, -8, 8])
    array([ 2.+4.5324j,  3.+4.5324j,  3.+0.j    ])

    """
    x = _fix_real_lt_zero(x)
    return nx.log2(x)

def power(x, p):
    """
    Return x to the power p, (x**p).

    If `x` contains negative values, the output is converted to the
    complex domain.

    Parameters
    ----------
    x : array_like
        The input value(s).
    p : array_like of ints
        The power(s) to which `x` is raised. If `x` contains multiple values,
        `p` has to either be a scalar, or contain the same number of values
        as `x`. In the latter case, the result is
        ``x[0]**p[0], x[1]**p[1], ...``.

    Returns
    -------
    out : ndarray or scalar
        The result of ``x**p``. If `x` and `p` are scalars, so is `out`,
        otherwise an array is returned.

    See Also
    --------
    numpy.power

    Examples
    --------
    >>> np.set_printoptions(precision=4)

    >>> np.lib.scimath.power([2, 4], 2)
    array([ 4, 16])
    >>> np.lib.scimath.power([2, 4], -2)
    array([ 0.25  ,  0.0625])
    >>> np.lib.scimath.power([-2, 4], 2)
    array([  4.+0.j,  16.+0.j])

    """
    x = _fix_real_lt_zero(x)
    p = _fix_int_lt_zero(p)
    return nx.power(x, p)

def arccos(x):
    """
    Compute the inverse cosine of x.

    Return the "principal value" (for a description of this, see
    `numpy.arccos`) of the inverse cosine of `x`. For real `x` such that
    `abs(x) <= 1`, this is a real number in the closed interval
    :math:`[0, \\pi]`.  Otherwise, the complex principle value is returned.

    Parameters
    ----------
    x : array_like or scalar
       The value(s) whose arccos is (are) required.

    Returns
    -------
    out : ndarray or scalar
       The inverse cosine(s) of the `x` value(s). If `x` was a scalar, so
       is `out`, otherwise an array object is returned.

    See Also
    --------
    numpy.arccos

    Notes
    -----
    For an arccos() that returns ``NAN`` when real `x` is not in the
    interval ``[-1,1]``, use `numpy.arccos`.

    Examples
    --------
    >>> np.set_printoptions(precision=4)

    >>> np.emath.arccos(1) # a scalar is returned
    0.0

    >>> np.emath.arccos([1,2])
    array([ 0.-0.j   ,  0.+1.317j])

    """
    x = _fix_real_abs_gt_1(x)
    return nx.arccos(x)

def arcsin(x):
    """
    Compute the inverse sine of x.

    Return the "principal value" (for a description of this, see
    `numpy.arcsin`) of the inverse sine of `x`. For real `x` such that
    `abs(x) <= 1`, this is a real number in the closed interval
    :math:`[-\\pi/2, \\pi/2]`.  Otherwise, the complex principle value is
    returned.

    Parameters
    ----------
    x : array_like or scalar
       The value(s) whose arcsin is (are) required.

    Returns
    -------
    out : ndarray or scalar
       The inverse sine(s) of the `x` value(s). If `x` was a scalar, so
       is `out`, otherwise an array object is returned.

    See Also
    --------
    numpy.arcsin

    Notes
    -----
    For an arcsin() that returns ``NAN`` when real `x` is not in the
    interval ``[-1,1]``, use `numpy.arcsin`.

    Examples
    --------
    >>> np.set_printoptions(precision=4)

    >>> np.emath.arcsin(0)
    0.0

    >>> np.emath.arcsin([0,1])
    array([ 0.    ,  1.5708])

    """
    x = _fix_real_abs_gt_1(x)
    return nx.arcsin(x)

def arctanh(x):
    """
    Compute the inverse hyperbolic tangent of `x`.

    Return the "principal value" (for a description of this, see
    `numpy.arctanh`) of `arctanh(x)`. For real `x` such that
    `abs(x) < 1`, this is a real number.  If `abs(x) > 1`, or if `x` is
    complex, the result is complex. Finally, `x = 1` returns``inf`` and
    `x=-1` returns ``-inf``.

    Parameters
    ----------
    x : array_like
       The value(s) whose arctanh is (are) required.

    Returns
    -------
    out : ndarray or scalar
       The inverse hyperbolic tangent(s) of the `x` value(s). If `x` was
       a scalar so is `out`, otherwise an array is returned.


    See Also
    --------
    numpy.arctanh

    Notes
    -----
    For an arctanh() that returns ``NAN`` when real `x` is not in the
    interval ``(-1,1)``, use `numpy.arctanh` (this latter, however, does
    return +/-inf for `x = +/-1`).

    Examples
    --------
    >>> np.set_printoptions(precision=4)

    >>> np.emath.arctanh(np.matrix(np.eye(2)))
    array([[ Inf,   0.],
           [  0.,  Inf]])
    >>> np.emath.arctanh([1j])
    array([ 0.+0.7854j])

    """
    x = _fix_real_abs_gt_1(x)
    return nx.arctanh(x)