This file is indexed.

/usr/lib/python2.7/dist-packages/numpy/lib/index_tricks.py is in python-numpy 1:1.12.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
from __future__ import division, absolute_import, print_function

import sys
import math

import numpy.core.numeric as _nx
from numpy.core.numeric import (
    asarray, ScalarType, array, alltrue, cumprod, arange
    )
from numpy.core.numerictypes import find_common_type, issubdtype

from . import function_base
import numpy.matrixlib as matrix
from .function_base import diff
from numpy.core.multiarray import ravel_multi_index, unravel_index
from numpy.lib.stride_tricks import as_strided

makemat = matrix.matrix


__all__ = [
    'ravel_multi_index', 'unravel_index', 'mgrid', 'ogrid', 'r_', 'c_',
    's_', 'index_exp', 'ix_', 'ndenumerate', 'ndindex', 'fill_diagonal',
    'diag_indices', 'diag_indices_from'
    ]


def ix_(*args):
    """
    Construct an open mesh from multiple sequences.

    This function takes N 1-D sequences and returns N outputs with N
    dimensions each, such that the shape is 1 in all but one dimension
    and the dimension with the non-unit shape value cycles through all
    N dimensions.

    Using `ix_` one can quickly construct index arrays that will index
    the cross product. ``a[np.ix_([1,3],[2,5])]`` returns the array
    ``[[a[1,2] a[1,5]], [a[3,2] a[3,5]]]``.

    Parameters
    ----------
    args : 1-D sequences

    Returns
    -------
    out : tuple of ndarrays
        N arrays with N dimensions each, with N the number of input
        sequences. Together these arrays form an open mesh.

    See Also
    --------
    ogrid, mgrid, meshgrid

    Examples
    --------
    >>> a = np.arange(10).reshape(2, 5)
    >>> a
    array([[0, 1, 2, 3, 4],
           [5, 6, 7, 8, 9]])
    >>> ixgrid = np.ix_([0,1], [2,4])
    >>> ixgrid
    (array([[0],
           [1]]), array([[2, 4]]))
    >>> ixgrid[0].shape, ixgrid[1].shape
    ((2, 1), (1, 2))
    >>> a[ixgrid]
    array([[2, 4],
           [7, 9]])

    """
    out = []
    nd = len(args)
    for k, new in enumerate(args):
        new = asarray(new)
        if new.ndim != 1:
            raise ValueError("Cross index must be 1 dimensional")
        if new.size == 0:
            # Explicitly type empty arrays to avoid float default
            new = new.astype(_nx.intp)
        if issubdtype(new.dtype, _nx.bool_):
            new, = new.nonzero()
        new = new.reshape((1,)*k + (new.size,) + (1,)*(nd-k-1))
        out.append(new)
    return tuple(out)

class nd_grid(object):
    """
    Construct a multi-dimensional "meshgrid".

    ``grid = nd_grid()`` creates an instance which will return a mesh-grid
    when indexed.  The dimension and number of the output arrays are equal
    to the number of indexing dimensions.  If the step length is not a
    complex number, then the stop is not inclusive.

    However, if the step length is a **complex number** (e.g. 5j), then the
    integer part of its magnitude is interpreted as specifying the
    number of points to create between the start and stop values, where
    the stop value **is inclusive**.

    If instantiated with an argument of ``sparse=True``, the mesh-grid is
    open (or not fleshed out) so that only one-dimension of each returned
    argument is greater than 1.

    Parameters
    ----------
    sparse : bool, optional
        Whether the grid is sparse or not. Default is False.

    Notes
    -----
    Two instances of `nd_grid` are made available in the NumPy namespace,
    `mgrid` and `ogrid`::

        mgrid = nd_grid(sparse=False)
        ogrid = nd_grid(sparse=True)

    Users should use these pre-defined instances instead of using `nd_grid`
    directly.

    Examples
    --------
    >>> mgrid = np.lib.index_tricks.nd_grid()
    >>> mgrid[0:5,0:5]
    array([[[0, 0, 0, 0, 0],
            [1, 1, 1, 1, 1],
            [2, 2, 2, 2, 2],
            [3, 3, 3, 3, 3],
            [4, 4, 4, 4, 4]],
           [[0, 1, 2, 3, 4],
            [0, 1, 2, 3, 4],
            [0, 1, 2, 3, 4],
            [0, 1, 2, 3, 4],
            [0, 1, 2, 3, 4]]])
    >>> mgrid[-1:1:5j]
    array([-1. , -0.5,  0. ,  0.5,  1. ])

    >>> ogrid = np.lib.index_tricks.nd_grid(sparse=True)
    >>> ogrid[0:5,0:5]
    [array([[0],
            [1],
            [2],
            [3],
            [4]]), array([[0, 1, 2, 3, 4]])]

    """

    def __init__(self, sparse=False):
        self.sparse = sparse

    def __getitem__(self, key):
        try:
            size = []
            typ = int
            for k in range(len(key)):
                step = key[k].step
                start = key[k].start
                if start is None:
                    start = 0
                if step is None:
                    step = 1
                if isinstance(step, complex):
                    size.append(int(abs(step)))
                    typ = float
                else:
                    size.append(
                        int(math.ceil((key[k].stop - start)/(step*1.0))))
                if (isinstance(step, float) or
                        isinstance(start, float) or
                        isinstance(key[k].stop, float)):
                    typ = float
            if self.sparse:
                nn = [_nx.arange(_x, dtype=_t)
                        for _x, _t in zip(size, (typ,)*len(size))]
            else:
                nn = _nx.indices(size, typ)
            for k in range(len(size)):
                step = key[k].step
                start = key[k].start
                if start is None:
                    start = 0
                if step is None:
                    step = 1
                if isinstance(step, complex):
                    step = int(abs(step))
                    if step != 1:
                        step = (key[k].stop - start)/float(step-1)
                nn[k] = (nn[k]*step+start)
            if self.sparse:
                slobj = [_nx.newaxis]*len(size)
                for k in range(len(size)):
                    slobj[k] = slice(None, None)
                    nn[k] = nn[k][slobj]
                    slobj[k] = _nx.newaxis
            return nn
        except (IndexError, TypeError):
            step = key.step
            stop = key.stop
            start = key.start
            if start is None:
                start = 0
            if isinstance(step, complex):
                step = abs(step)
                length = int(step)
                if step != 1:
                    step = (key.stop-start)/float(step-1)
                stop = key.stop + step
                return _nx.arange(0, length, 1, float)*step + start
            else:
                return _nx.arange(start, stop, step)

    def __getslice__(self, i, j):
        return _nx.arange(i, j)

    def __len__(self):
        return 0

mgrid = nd_grid(sparse=False)
ogrid = nd_grid(sparse=True)
mgrid.__doc__ = None  # set in numpy.add_newdocs
ogrid.__doc__ = None  # set in numpy.add_newdocs

class AxisConcatenator(object):
    """
    Translates slice objects to concatenation along an axis.

    For detailed documentation on usage, see `r_`.

    """

    def _retval(self, res):
        if self.matrix:
            oldndim = res.ndim
            res = makemat(res)
            if oldndim == 1 and self.col:
                res = res.T
        self.axis = self._axis
        self.matrix = self._matrix
        self.col = 0
        return res

    def __init__(self, axis=0, matrix=False, ndmin=1, trans1d=-1):
        self._axis = axis
        self._matrix = matrix
        self.axis = axis
        self.matrix = matrix
        self.col = 0
        self.trans1d = trans1d
        self.ndmin = ndmin

    def __getitem__(self, key):
        trans1d = self.trans1d
        ndmin = self.ndmin
        if isinstance(key, str):
            frame = sys._getframe().f_back
            mymat = matrix.bmat(key, frame.f_globals, frame.f_locals)
            return mymat
        if not isinstance(key, tuple):
            key = (key,)
        objs = []
        scalars = []
        arraytypes = []
        scalartypes = []
        for k in range(len(key)):
            scalar = False
            if isinstance(key[k], slice):
                step = key[k].step
                start = key[k].start
                stop = key[k].stop
                if start is None:
                    start = 0
                if step is None:
                    step = 1
                if isinstance(step, complex):
                    size = int(abs(step))
                    newobj = function_base.linspace(start, stop, num=size)
                else:
                    newobj = _nx.arange(start, stop, step)
                if ndmin > 1:
                    newobj = array(newobj, copy=False, ndmin=ndmin)
                    if trans1d != -1:
                        newobj = newobj.swapaxes(-1, trans1d)
            elif isinstance(key[k], str):
                if k != 0:
                    raise ValueError("special directives must be the "
                            "first entry.")
                key0 = key[0]
                if key0 in 'rc':
                    self.matrix = True
                    self.col = (key0 == 'c')
                    continue
                if ',' in key0:
                    vec = key0.split(',')
                    try:
                        self.axis, ndmin = \
                                   [int(x) for x in vec[:2]]
                        if len(vec) == 3:
                            trans1d = int(vec[2])
                        continue
                    except:
                        raise ValueError("unknown special directive")
                try:
                    self.axis = int(key[k])
                    continue
                except (ValueError, TypeError):
                    raise ValueError("unknown special directive")
            elif type(key[k]) in ScalarType:
                newobj = array(key[k], ndmin=ndmin)
                scalars.append(k)
                scalar = True
                scalartypes.append(newobj.dtype)
            else:
                newobj = key[k]
                if ndmin > 1:
                    tempobj = array(newobj, copy=False, subok=True)
                    newobj = array(newobj, copy=False, subok=True,
                                   ndmin=ndmin)
                    if trans1d != -1 and tempobj.ndim < ndmin:
                        k2 = ndmin-tempobj.ndim
                        if (trans1d < 0):
                            trans1d += k2 + 1
                        defaxes = list(range(ndmin))
                        k1 = trans1d
                        axes = defaxes[:k1] + defaxes[k2:] + \
                               defaxes[k1:k2]
                        newobj = newobj.transpose(axes)
                    del tempobj
            objs.append(newobj)
            if not scalar and isinstance(newobj, _nx.ndarray):
                arraytypes.append(newobj.dtype)

        #  Esure that scalars won't up-cast unless warranted
        final_dtype = find_common_type(arraytypes, scalartypes)
        if final_dtype is not None:
            for k in scalars:
                objs[k] = objs[k].astype(final_dtype)

        res = _nx.concatenate(tuple(objs), axis=self.axis)
        return self._retval(res)

    def __getslice__(self, i, j):
        res = _nx.arange(i, j)
        return self._retval(res)

    def __len__(self):
        return 0

# separate classes are used here instead of just making r_ = concatentor(0),
# etc. because otherwise we couldn't get the doc string to come out right
# in help(r_)

class RClass(AxisConcatenator):
    """
    Translates slice objects to concatenation along the first axis.

    This is a simple way to build up arrays quickly. There are two use cases.

    1. If the index expression contains comma separated arrays, then stack
       them along their first axis.
    2. If the index expression contains slice notation or scalars then create
       a 1-D array with a range indicated by the slice notation.

    If slice notation is used, the syntax ``start:stop:step`` is equivalent
    to ``np.arange(start, stop, step)`` inside of the brackets. However, if
    ``step`` is an imaginary number (i.e. 100j) then its integer portion is
    interpreted as a number-of-points desired and the start and stop are
    inclusive. In other words ``start:stop:stepj`` is interpreted as
    ``np.linspace(start, stop, step, endpoint=1)`` inside of the brackets.
    After expansion of slice notation, all comma separated sequences are
    concatenated together.

    Optional character strings placed as the first element of the index
    expression can be used to change the output. The strings 'r' or 'c' result
    in matrix output. If the result is 1-D and 'r' is specified a 1 x N (row)
    matrix is produced. If the result is 1-D and 'c' is specified, then a N x 1
    (column) matrix is produced. If the result is 2-D then both provide the
    same matrix result.

    A string integer specifies which axis to stack multiple comma separated
    arrays along. A string of two comma-separated integers allows indication
    of the minimum number of dimensions to force each entry into as the
    second integer (the axis to concatenate along is still the first integer).

    A string with three comma-separated integers allows specification of the
    axis to concatenate along, the minimum number of dimensions to force the
    entries to, and which axis should contain the start of the arrays which
    are less than the specified number of dimensions. In other words the third
    integer allows you to specify where the 1's should be placed in the shape
    of the arrays that have their shapes upgraded. By default, they are placed
    in the front of the shape tuple. The third argument allows you to specify
    where the start of the array should be instead. Thus, a third argument of
    '0' would place the 1's at the end of the array shape. Negative integers
    specify where in the new shape tuple the last dimension of upgraded arrays
    should be placed, so the default is '-1'.

    Parameters
    ----------
    Not a function, so takes no parameters


    Returns
    -------
    A concatenated ndarray or matrix.

    See Also
    --------
    concatenate : Join a sequence of arrays along an existing axis.
    c_ : Translates slice objects to concatenation along the second axis.

    Examples
    --------
    >>> np.r_[np.array([1,2,3]), 0, 0, np.array([4,5,6])]
    array([1, 2, 3, 0, 0, 4, 5, 6])
    >>> np.r_[-1:1:6j, [0]*3, 5, 6]
    array([-1. , -0.6, -0.2,  0.2,  0.6,  1. ,  0. ,  0. ,  0. ,  5. ,  6. ])

    String integers specify the axis to concatenate along or the minimum
    number of dimensions to force entries into.

    >>> a = np.array([[0, 1, 2], [3, 4, 5]])
    >>> np.r_['-1', a, a] # concatenate along last axis
    array([[0, 1, 2, 0, 1, 2],
           [3, 4, 5, 3, 4, 5]])
    >>> np.r_['0,2', [1,2,3], [4,5,6]] # concatenate along first axis, dim>=2
    array([[1, 2, 3],
           [4, 5, 6]])

    >>> np.r_['0,2,0', [1,2,3], [4,5,6]]
    array([[1],
           [2],
           [3],
           [4],
           [5],
           [6]])
    >>> np.r_['1,2,0', [1,2,3], [4,5,6]]
    array([[1, 4],
           [2, 5],
           [3, 6]])

    Using 'r' or 'c' as a first string argument creates a matrix.

    >>> np.r_['r',[1,2,3], [4,5,6]]
    matrix([[1, 2, 3, 4, 5, 6]])

    """

    def __init__(self):
        AxisConcatenator.__init__(self, 0)

r_ = RClass()

class CClass(AxisConcatenator):
    """
    Translates slice objects to concatenation along the second axis.

    This is short-hand for ``np.r_['-1,2,0', index expression]``, which is
    useful because of its common occurrence. In particular, arrays will be
    stacked along their last axis after being upgraded to at least 2-D with
    1's post-pended to the shape (column vectors made out of 1-D arrays).

    For detailed documentation, see `r_`.

    Examples
    --------
    >>> np.c_[np.array([[1,2,3]]), 0, 0, np.array([[4,5,6]])]
    array([[1, 2, 3, 0, 0, 4, 5, 6]])

    """

    def __init__(self):
        AxisConcatenator.__init__(self, -1, ndmin=2, trans1d=0)

c_ = CClass()

class ndenumerate(object):
    """
    Multidimensional index iterator.

    Return an iterator yielding pairs of array coordinates and values.

    Parameters
    ----------
    arr : ndarray
      Input array.

    See Also
    --------
    ndindex, flatiter

    Examples
    --------
    >>> a = np.array([[1, 2], [3, 4]])
    >>> for index, x in np.ndenumerate(a):
    ...     print(index, x)
    (0, 0) 1
    (0, 1) 2
    (1, 0) 3
    (1, 1) 4

    """

    def __init__(self, arr):
        self.iter = asarray(arr).flat

    def __next__(self):
        """
        Standard iterator method, returns the index tuple and array value.

        Returns
        -------
        coords : tuple of ints
            The indices of the current iteration.
        val : scalar
            The array element of the current iteration.

        """
        return self.iter.coords, next(self.iter)

    def __iter__(self):
        return self

    next = __next__


class ndindex(object):
    """
    An N-dimensional iterator object to index arrays.

    Given the shape of an array, an `ndindex` instance iterates over
    the N-dimensional index of the array. At each iteration a tuple
    of indices is returned, the last dimension is iterated over first.

    Parameters
    ----------
    `*args` : ints
      The size of each dimension of the array.

    See Also
    --------
    ndenumerate, flatiter

    Examples
    --------
    >>> for index in np.ndindex(3, 2, 1):
    ...     print(index)
    (0, 0, 0)
    (0, 1, 0)
    (1, 0, 0)
    (1, 1, 0)
    (2, 0, 0)
    (2, 1, 0)

    """

    def __init__(self, *shape):
        if len(shape) == 1 and isinstance(shape[0], tuple):
            shape = shape[0]
        x = as_strided(_nx.zeros(1), shape=shape,
                       strides=_nx.zeros_like(shape))
        self._it = _nx.nditer(x, flags=['multi_index', 'zerosize_ok'],
                              order='C')

    def __iter__(self):
        return self

    def ndincr(self):
        """
        Increment the multi-dimensional index by one.

        This method is for backward compatibility only: do not use.
        """
        next(self)

    def __next__(self):
        """
        Standard iterator method, updates the index and returns the index
        tuple.

        Returns
        -------
        val : tuple of ints
            Returns a tuple containing the indices of the current
            iteration.

        """
        next(self._it)
        return self._it.multi_index

    next = __next__


# You can do all this with slice() plus a few special objects,
# but there's a lot to remember. This version is simpler because
# it uses the standard array indexing syntax.
#
# Written by Konrad Hinsen <hinsen@cnrs-orleans.fr>
# last revision: 1999-7-23
#
# Cosmetic changes by T. Oliphant 2001
#
#

class IndexExpression(object):
    """
    A nicer way to build up index tuples for arrays.

    .. note::
       Use one of the two predefined instances `index_exp` or `s_`
       rather than directly using `IndexExpression`.

    For any index combination, including slicing and axis insertion,
    ``a[indices]`` is the same as ``a[np.index_exp[indices]]`` for any
    array `a`. However, ``np.index_exp[indices]`` can be used anywhere
    in Python code and returns a tuple of slice objects that can be
    used in the construction of complex index expressions.

    Parameters
    ----------
    maketuple : bool
        If True, always returns a tuple.

    See Also
    --------
    index_exp : Predefined instance that always returns a tuple:
       `index_exp = IndexExpression(maketuple=True)`.
    s_ : Predefined instance without tuple conversion:
       `s_ = IndexExpression(maketuple=False)`.

    Notes
    -----
    You can do all this with `slice()` plus a few special objects,
    but there's a lot to remember and this version is simpler because
    it uses the standard array indexing syntax.

    Examples
    --------
    >>> np.s_[2::2]
    slice(2, None, 2)
    >>> np.index_exp[2::2]
    (slice(2, None, 2),)

    >>> np.array([0, 1, 2, 3, 4])[np.s_[2::2]]
    array([2, 4])

    """

    def __init__(self, maketuple):
        self.maketuple = maketuple

    def __getitem__(self, item):
        if self.maketuple and not isinstance(item, tuple):
            return (item,)
        else:
            return item

index_exp = IndexExpression(maketuple=True)
s_ = IndexExpression(maketuple=False)

# End contribution from Konrad.


# The following functions complement those in twodim_base, but are
# applicable to N-dimensions.

def fill_diagonal(a, val, wrap=False):
    """Fill the main diagonal of the given array of any dimensionality.

    For an array `a` with ``a.ndim > 2``, the diagonal is the list of
    locations with indices ``a[i, i, ..., i]`` all identical. This function
    modifies the input array in-place, it does not return a value.

    Parameters
    ----------
    a : array, at least 2-D.
      Array whose diagonal is to be filled, it gets modified in-place.

    val : scalar
      Value to be written on the diagonal, its type must be compatible with
      that of the array a.

    wrap : bool
      For tall matrices in NumPy version up to 1.6.2, the
      diagonal "wrapped" after N columns. You can have this behavior
      with this option. This affects only tall matrices.

    See also
    --------
    diag_indices, diag_indices_from

    Notes
    -----
    .. versionadded:: 1.4.0

    This functionality can be obtained via `diag_indices`, but internally
    this version uses a much faster implementation that never constructs the
    indices and uses simple slicing.

    Examples
    --------
    >>> a = np.zeros((3, 3), int)
    >>> np.fill_diagonal(a, 5)
    >>> a
    array([[5, 0, 0],
           [0, 5, 0],
           [0, 0, 5]])

    The same function can operate on a 4-D array:

    >>> a = np.zeros((3, 3, 3, 3), int)
    >>> np.fill_diagonal(a, 4)

    We only show a few blocks for clarity:

    >>> a[0, 0]
    array([[4, 0, 0],
           [0, 0, 0],
           [0, 0, 0]])
    >>> a[1, 1]
    array([[0, 0, 0],
           [0, 4, 0],
           [0, 0, 0]])
    >>> a[2, 2]
    array([[0, 0, 0],
           [0, 0, 0],
           [0, 0, 4]])

    The wrap option affects only tall matrices:

    >>> # tall matrices no wrap
    >>> a = np.zeros((5, 3),int)
    >>> fill_diagonal(a, 4)
    >>> a
    array([[4, 0, 0],
           [0, 4, 0],
           [0, 0, 4],
           [0, 0, 0],
           [0, 0, 0]])

    >>> # tall matrices wrap
    >>> a = np.zeros((5, 3),int)
    >>> fill_diagonal(a, 4, wrap=True)
    >>> a
    array([[4, 0, 0],
           [0, 4, 0],
           [0, 0, 4],
           [0, 0, 0],
           [4, 0, 0]])

    >>> # wide matrices
    >>> a = np.zeros((3, 5),int)
    >>> fill_diagonal(a, 4, wrap=True)
    >>> a
    array([[4, 0, 0, 0, 0],
           [0, 4, 0, 0, 0],
           [0, 0, 4, 0, 0]])

    """
    if a.ndim < 2:
        raise ValueError("array must be at least 2-d")
    end = None
    if a.ndim == 2:
        # Explicit, fast formula for the common case.  For 2-d arrays, we
        # accept rectangular ones.
        step = a.shape[1] + 1
        #This is needed to don't have tall matrix have the diagonal wrap.
        if not wrap:
            end = a.shape[1] * a.shape[1]
    else:
        # For more than d=2, the strided formula is only valid for arrays with
        # all dimensions equal, so we check first.
        if not alltrue(diff(a.shape) == 0):
            raise ValueError("All dimensions of input must be of equal length")
        step = 1 + (cumprod(a.shape[:-1])).sum()

    # Write the value out into the diagonal.
    a.flat[:end:step] = val


def diag_indices(n, ndim=2):
    """
    Return the indices to access the main diagonal of an array.

    This returns a tuple of indices that can be used to access the main
    diagonal of an array `a` with ``a.ndim >= 2`` dimensions and shape
    (n, n, ..., n). For ``a.ndim = 2`` this is the usual diagonal, for
    ``a.ndim > 2`` this is the set of indices to access ``a[i, i, ..., i]``
    for ``i = [0..n-1]``.

    Parameters
    ----------
    n : int
      The size, along each dimension, of the arrays for which the returned
      indices can be used.

    ndim : int, optional
      The number of dimensions.

    See also
    --------
    diag_indices_from

    Notes
    -----
    .. versionadded:: 1.4.0

    Examples
    --------
    Create a set of indices to access the diagonal of a (4, 4) array:

    >>> di = np.diag_indices(4)
    >>> di
    (array([0, 1, 2, 3]), array([0, 1, 2, 3]))
    >>> a = np.arange(16).reshape(4, 4)
    >>> a
    array([[ 0,  1,  2,  3],
           [ 4,  5,  6,  7],
           [ 8,  9, 10, 11],
           [12, 13, 14, 15]])
    >>> a[di] = 100
    >>> a
    array([[100,   1,   2,   3],
           [  4, 100,   6,   7],
           [  8,   9, 100,  11],
           [ 12,  13,  14, 100]])

    Now, we create indices to manipulate a 3-D array:

    >>> d3 = np.diag_indices(2, 3)
    >>> d3
    (array([0, 1]), array([0, 1]), array([0, 1]))

    And use it to set the diagonal of an array of zeros to 1:

    >>> a = np.zeros((2, 2, 2), dtype=np.int)
    >>> a[d3] = 1
    >>> a
    array([[[1, 0],
            [0, 0]],
           [[0, 0],
            [0, 1]]])

    """
    idx = arange(n)
    return (idx,) * ndim


def diag_indices_from(arr):
    """
    Return the indices to access the main diagonal of an n-dimensional array.

    See `diag_indices` for full details.

    Parameters
    ----------
    arr : array, at least 2-D

    See Also
    --------
    diag_indices

    Notes
    -----
    .. versionadded:: 1.4.0

    """

    if not arr.ndim >= 2:
        raise ValueError("input array must be at least 2-d")
    # For more than d=2, the strided formula is only valid for arrays with
    # all dimensions equal, so we check first.
    if not alltrue(diff(arr.shape) == 0):
        raise ValueError("All dimensions of input must be of equal length")

    return diag_indices(arr.shape[0], arr.ndim)