This file is indexed.

/usr/share/pdb2pqr/extensions/resinter.py is in pdb2pqr 2.1.1+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
"""
    Resinter extension

    Print interaction energy between each residue pair in the protein. 
"""

__date__ = "21 October 2011"
__authors__ = "Kyle Monson and Emile Hogan"

import extensions
from src.hydrogens import Optimize
#itertools FTW!
from itertools import product, permutations, izip, count
from collections import defaultdict
from src.hydrogens import hydrogenRoutines

_titrationSets = (('ARG','AR0'),
                  ('ASP', 'ASH'),
                  ('CYS', 'CYX'),
                  ('GLU', 'GLH'),
                  ('HSD', 'HSE', 'HSP'),
                  ('HID', 'HIE', 'HIP'),
                  ('LYN', 'LYS'),
                  ('TYR', 'TYM'),
                  ('NEUTRAL-CTERM', 'CTERM'),
                  ('NEUTRAL-NTERM', 'NTERM'))

_titrationSetsMap = defaultdict(tuple)

for tsSet in _titrationSets:
    for ts in tsSet:
        _titrationSetsMap[ts] = tsSet
        
#loose ends.
_titrationSetsMap['HIS'] = _titrationSetsMap['HSD']
_titrationSetsMap['CYM'] = _titrationSetsMap['CYS']

_pairEnergyResults = {}
#If the residue pair energy for a specific pair changes less than this ignore it.
PAIR_ENERGY_EPSILON = 1.0e-14

def addExtensionOptions(extensionGroup):
    """
        Add options.
    """
    extensionGroup.add_option('--residue_combinations', 
                              dest='residue_combinations', 
                              action='store_true', 
                              default=False,
                              help=
'''Remap residues to different titration states and rerun resinter appending output.
Consider only the minimum number of whole protein titration combinations needed to
test each possible pairing of residue titration states. Normally used with
--noopt. If a protein titration state combination results in a pair of residue being 
re-tested in the same individual titration states a warning will be generated if the 
re-tested result is different. This warning should not be possible if used with --noopt.''') 
    
    extensionGroup.add_option('--all_residue_combinations', 
                              dest='all_residue_combinations', 
                              action='store_true', 
                              default=False,
                              help=
'''Remap residues to ALL possible titration state combinations and rerun resinter appending output.
Results with --noopt should be the same as --residue_combinations. Runs considerably slower than
--residue_combinations and generates the same type of warnings. 
Use without --noopt to discover how hydrogen optimization affects residue 
interaction energies via the warnings in the output.''') 

def usage():
    """
    Returns usage text for resinter.
    """
    txt = 'Print interaction energy between each residue pair in the protein to {output-path}.resinter.'
    return txt

def _combinations(sublist, remainder):
    """
    combinations function helper
    
    sublist - first list in list of lists for combinations
    remainder - list of remaining lists
    """
    if remainder and sublist:
        for item in sublist:
            for result in _combinations(remainder[0], remainder[1:]):
                yield [item] + result
        return
    elif sublist:
        for item in sublist:
            yield [item]
        return
    elif remainder:
        for result in _combinations(remainder[0], remainder[1:]):
            yield [None] + result
        return
            
    yield [None]

def combinations(initialList):
    """
    Wrapper for main combinations function. 
    
    Iterates over each possible combination of single items 
    from each sub-list. For example:
    
    combinations([[1,2],[3,4]] -> [1,3], [1,4], [2,3], [2,4] in that order.     
    
    
    initialList - list of lists to derive combinations from.
    """
    if not initialList:
        return
    for result in _combinations(initialList[0], initialList[1:]):
        yield result


def pairwiseCombinations(initialList):
    """
    Creates the minimum set of combinations that will make available 
    every possible pair available.
    """
    r = [len(x) for x in initialList]
    m = min(r)
    M = max(r)
    n = len(initialList)
    
    R = set()
    
    for i in range(m):
        t = [initialList[x][i] for x in range(n)]
        R.add(tuple(t))
        
    for i in range(m,M):
        t = [initialList[x][min(r[x]-1,i)] for x in range(n)]
        R.add(tuple(t))
        
    for i in range(m):
        for j in range(n):
            for k in range(i+1,r[j]):
                prejth = [initialList[x][i] for x in range(j)]

                jth = initialList[j][k]
                
                postjth = [initialList[x][i] for x in range(j+1, n)]
                
                t = prejth + [jth] + postjth
                R.add(tuple(t))
    
    for i in range(m,M):
        for j in range(n):
            if r[i] < i:
                continue
            for k in range(i+1,r[j]):
                prejth = [initialList[x][min(r[x]-1,i)] for x in range(j)]

                jth = initialList[j][k]
                
                postjth = [initialList[x][min(r[x]-1,i)] for x in range(j+1, n)]
                
                t = prejth + [jth] + postjth
                R.add(tuple(t))
                
    return R
    
def get_residue_interaction_energy(residue1, residue2):
    """
    Returns to total energy of every atom pair between the two residues.
    
    Uses Optimize.getPairEnergy and it's donor/accepter model 
    to determine energy.
    
    residue1 - "donor" residue
    residue2 - "acceptor" residue
    
    THE RESULTS OF THIS FUNCTION ARE NOT SYMMETRIC. Swapping 
    residue1 and residue2 will not always produce the same result.
    """
    energy = 0.0
    for pair in product(residue1.getAtoms(), residue2.getAtoms()):
        energy += Optimize.getPairEnergy(pair[0], pair[1])
        
    return energy

def save_residue_interaction_energies(residues, output):
    """
    Writes out the residue interaction energy for each possible
    residue pair in the protein.
    """
    residuepairs = permutations(residues, 2)
    
    for pair in residuepairs:
        energy = get_residue_interaction_energy(pair[0], pair[1])
        pairText = str(pair[0]) + ' ' + str(pair[1])
        if pairText in _pairEnergyResults:
            
            oldEnergy = _pairEnergyResults[pairText]
            energyDiff = oldEnergy - energy
            if abs(energyDiff) > PAIR_ENERGY_EPSILON:
                txt = '#%s re-tested' % pairText
                txt += ' with a difference of %s' % repr(energyDiff)
                if (energy != 0):
                    txt += ' and a reference of %s' % repr(energyDiff/energy)
                else:
                    txt += ' and the previous energy was 0'
                txt += '\n'

                output.write(txt)
                 
            continue
        
        _pairEnergyResults[pairText] = energy
                    
        
def get_residue_titration_sets(residues):
    """
    Returns all possible titration states for each residue as a list of lists.
    """
    result = []
    for residue in residues:
        result.append(_titrationSetsMap.get(residue.name, (residue.name,)))
        
    return result

def process_residue_set(residueSet, routines, output, clean = False,
                                                      neutraln = False,
                                                      neutralc = False,
                                                      ligand = None,
                                                      assign_only = False,
                                                      chain = False,
                                                      debump = True,
                                                      opt = True):
    routines.write(str(residueSet)+'\n')
    
    routines.removeHydrogens()
    
    for newResidueName, oldResidue, index in izip(residueSet, routines.protein.getResidues(), count()):
        if newResidueName is None:
            continue
        
        chain = routines.protein.chainmap[oldResidue.chainID]
        chainIndex = chain.residues.index(oldResidue)
        residueAtoms = oldResidue.atoms
        
        #Create the replacement residue
        newResidue = routines.protein.createResidue(residueAtoms, newResidueName)
        
        #Make sure our names are cleaned up for output.
        newResidue.renameResidue(newResidueName)
        
        #Drop it in
        routines.protein.residues[index] = newResidue
        chain.residues[chainIndex] = newResidue
    
    #Run the meaty bits of PDB2PQR  
    routines.setTermini(neutraln, neutralc)
    routines.updateBonds()
    
    if not clean and not assign_only:
        routines.updateSSbridges()

        if debump:
            routines.debumpProtein()
            
        routines.addHydrogens()

        hydRoutines = hydrogenRoutines(routines)

        if debump:
            routines.debumpProtein()  

        if opt:
            hydRoutines.setOptimizeableHydrogens()
            hydRoutines.initializeFullOptimization()
            hydRoutines.optimizeHydrogens()
        else:
            hydRoutines.initializeWaterOptimization()
            hydRoutines.optimizeHydrogens()

        # Special for GLH/ASH, since both conformations were added
        hydRoutines.cleanup()
        
    save_residue_interaction_energies(routines.protein.getResidues(), output)        
        

def write_all_residue_interaction_energies_combinations(routines, output, options, all_residue_combinations=False):
    """
    For every titration state combination of residue output the 
    interaction energy for all possible residue pairs. 
    """
    residueNamesList = get_residue_titration_sets(routines.protein.getResidues())
    
    routines.write("Testing the following combinations\n")
    namelist = [r.name for r in routines.protein.getResidues()]
    combinationsData = izip(namelist, residueNamesList)
    for thing in combinationsData:
        routines.write(str(thing)+'\n')
        
    if all_residue_combinations:
        combinationGenerator = combinations(residueNamesList)
    else:
        combinationGenerator = pairwiseCombinations(residueNamesList)
        
    count = 0
    for residueSet in combinationGenerator:
        count += 1
        process_residue_set(residueSet, routines, output, 
                            clean = options.clean,
                            neutraln = options.neutraln,
                            neutralc = options.neutralc,
                            ligand = options.ligand,
                            assign_only = options.assign_only,
                            chain = options.chain,
                            debump = options.debump,
                            opt = options.opt)
        
    for resultKey in sorted(_pairEnergyResults.iterkeys()):
        output.write(resultKey + ' ' + str(_pairEnergyResults[resultKey]) + '\n')
    
    routines.write(str(count)+' residue combinations tried\n')

def create_resinter_output(routines, outfile, options, 
                           residue_combinations=False,
                           all_residue_combinations=False):
    """
    Output the interaction energy between each possible residue pair.
    """
    routines.write("Printing residue interaction energies...\n")
    
    output = extensions.extOutputHelper(routines, outfile)
    
    if residue_combinations or all_residue_combinations:
        write_all_residue_interaction_energies_combinations(routines, output, options, 
                                                            all_residue_combinations=all_residue_combinations)
    else:
        save_residue_interaction_energies(routines.protein.getResidues(), output)
    

def run_extension(routines, outroot, options):
    outname = outroot + ".resinter"
    with open(outname, "w") as outfile:
        create_resinter_output(routines, outfile, options, 
                               residue_combinations=options.residue_combinations,
                               all_residue_combinations=options.all_residue_combinations)