This file is indexed.

/usr/include/OTB-5.8/otbMorphologicalPyramidSegmenter.txx is in libotb-dev 5.8.0+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.


     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef otbMorphologicalPyramidSegmenter_txx
#define otbMorphologicalPyramidSegmenter_txx

#include "otbMorphologicalPyramidSegmenter.h"

#include "otbImage.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkConnectedThresholdImageFilter.h"
#include "itkConnectedComponentImageFilter.h"
#include "itkRelabelComponentImageFilter.h"
#include "itkThresholdImageFilter.h"
#include "itkMultiplyImageFilter.h"
#include "itkCastImageFilter.h"
#include "itkInvertIntensityImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "otbThresholdImageToPointSetFilter.h"
#include "itkScalarImageToHistogramGenerator.h"
#include "itkMinimumMaximumImageCalculator.h"

namespace otb
{
namespace MorphologicalPyramid
{
/**
 * Constructor
 */
template <class TInputImage, class TOutputImage>
Segmenter<TInputImage, TOutputImage>
::Segmenter()
{
  this->SetNumberOfRequiredInputs(2);
  m_SeedsQuantile = 0.9;
  m_MinimumObjectSize = 10;
  m_SegmentDarkDetailsBool = false;
  m_NumberOfObjects = 0;
  m_ConnectedThresholdQuantile = 0.9;
}
/**
 * Set the details image.
 * \param detailsImage The details image from the morphological pyramid
 */
template <class TInputImage, class TOutputImage>
void
Segmenter<TInputImage, TOutputImage>
::SetDetailsImage(const InputImageType * detailsImage)
{
  this->SetNthInput(0, const_cast<TInputImage *>(detailsImage));
}
/**
 * Set the details image.
 * \return detailsImage The input details image.
 */
template <class TInputImage, class TOutputImage>
typename Segmenter<TInputImage, TOutputImage>::InputImageType *
Segmenter<TInputImage, TOutputImage>
::GetDetailsImage(void)
{
  return const_cast<InputImageType *>(this->GetInput(0));
}
/**
  * Set the original image.
  * \param originalImage The original image to segment.
  */
template <class TInputImage, class TOutputImage>
void
Segmenter<TInputImage, TOutputImage>
::SetOriginalImage(const InputImageType * originalImage)
{
  this->SetNthInput(1, const_cast<TInputImage *>(originalImage));
}
/**
 * Get the original image.
 * \return originalImage The original image to segment.
 */
template <class TInputImage, class TOutputImage>
typename Segmenter<TInputImage, TOutputImage>::InputImageType *
Segmenter<TInputImage, TOutputImage>
::GetOriginalImage(void)
{
  return const_cast<InputImageType *>(this->GetInput(1));
}
/**
 * Configure the input datas.
 */
template <class TInputImage, class TOutputImage>
void
Segmenter<TInputImage, TOutputImage>
::GenerateInputRequestedRegion()
{
  // call the superclass' implementation of this method
  Superclass::GenerateInputRequestedRegion();

  // get pointers to the inputs
  InputImagePointerType detailsPtr =
    const_cast<InputImageType *>(this->GetInput(0));

  InputImagePointerType origPtr =
    const_cast<InputImageType *>(this->GetInput(1));

  if (!detailsPtr || !origPtr)
    {
    return;
    }

  // We need to
  // configure the inputs such that all the data is available.
  detailsPtr->SetRequestedRegion(detailsPtr->GetLargestPossibleRegion());
  origPtr->SetRequestedRegion(origPtr->GetLargestPossibleRegion());
}
/**
 * Configure the output data
 */
template <class TInputImage, class TOutputImage>
void
Segmenter<TInputImage, TOutputImage>
::EnlargeOutputRequestedRegion(void)
{
  this->GetOutput()
  ->SetRequestedRegion(this->GetOutput()->GetLargestPossibleRegion());
}

/**
 * Main computation method
 */
template <class TInputImage, class TOutputImage>
void
Segmenter<TInputImage, TOutputImage>
::GenerateData()
{
  // Input images pointers
  InputImagePointerType details = this->GetDetailsImage();
  InputImagePointerType original = this->GetOriginalImage();

  // Typedefs for details image enhancement
  typedef double                                                                   FloatPixelType;
  typedef otb::Image<FloatPixelType, InputImageType::ImageDimension>               FloatImageType;
  typedef itk::InvertIntensityImageFilter<InputImageType, InputImageType>          InvertFilterType;
  typedef itk::MultiplyImageFilter<FloatImageType, FloatImageType, InputImageType> MultiplyFilterType;
  typedef itk::CastImageFilter<InputImageType, FloatImageType>                     CastImageFilterType;
  typedef itk::MinimumMaximumImageCalculator<InputImageType>                       MinMaxCalculatorType;

  //Typedefs for seeds extraction
  typedef itk::PointSet<InputPixelType, InputImageType::ImageDimension>     PointSetType;
  typedef otb::ThresholdImageToPointSetFilter<InputImageType, PointSetType> PointSetFilterType;
  typedef typename PointSetType::PointsContainer::Iterator                  PointSetIteratorType;

  // Typedefs for segmentation
  typedef itk::ConnectedThresholdImageFilter<InputImageType, InputImageType>  ConnectedFilterType;
  typedef itk::ConnectedComponentImageFilter<InputImageType, OutputImageType> LabelFilterType;
  typedef itk::RelabelComponentImageFilter<OutputImageType, OutputImageType>  RelabelFilterType;
  typedef itk::ThresholdImageFilter<OutputImageType>                          ThresholdFilterType;

  // Typedefs for statistics computation
  typedef itk::Statistics::ScalarImageToHistogramGenerator<InputImageType> HistGeneratorType;

  /////////////////////////////////////
  //// Details image enhancement //////
  /////////////////////////////////////

  // Filters instantiation
  typename InvertFilterType::Pointer     invert;
  typename CastImageFilterType::Pointer  cast1 = CastImageFilterType::New();
  typename CastImageFilterType::Pointer  cast2 = CastImageFilterType::New();
  typename MultiplyFilterType::Pointer   mult = MultiplyFilterType::New();
  typename MinMaxCalculatorType::Pointer minMax =  MinMaxCalculatorType::New();

  // Pipeline connection
  cast1->SetInput(details);

  minMax->SetImage(original);
  minMax->ComputeMaximum();

  // If we want to segment darker detail, the original image must have its itensity inverted
  if (m_SegmentDarkDetailsBool)
    {
    invert = InvertFilterType::New();
    invert->SetInput(original);
    invert->SetMaximum(minMax->GetMaximum());
    cast2->SetInput(invert->GetOutput());
    }
  else
    {
    cast2->SetInput(original);
    }
  mult->SetInput1(cast1->GetOutput());
  mult->SetInput2(cast2->GetOutput());
  mult->Update();

  /////////////////////////////////////
  //// Thresholds computation /////////
  /////////////////////////////////////

  // Filter instantiation
  typename HistGeneratorType::Pointer histogram = HistGeneratorType::New();
  // Seeds Threshold is computed from the quantile
  histogram->SetInput(details);
  histogram->SetNumberOfBins(255);
  histogram->SetMarginalScale(10.0);
  histogram->Compute();
  InputPixelType pointSetThreshold =
    static_cast<InputPixelType>(histogram->GetOutput()->Quantile(0, m_SeedsQuantile));

  // Segmentation Threshold is computed from the quantile
  histogram = HistGeneratorType::New();
  histogram->SetInput(mult->GetOutput());
  histogram->SetNumberOfBins(255);
  histogram->SetMarginalScale(10.0);
  histogram->Compute();
  InputPixelType connectedThresholdValue =
    static_cast<InputPixelType>(histogram->GetOutput()->Quantile(0, m_ConnectedThresholdQuantile));

  /////////////////////////////////////
  //// Seeds extraction ///////////////
  /////////////////////////////////////

  typename PointSetFilterType::Pointer pointSetFilter = PointSetFilterType::New();
  pointSetFilter->SetInput(0, details);
  pointSetFilter->SetLowerThreshold(pointSetThreshold);
  pointSetFilter->Update();

  /////////////////////////////////////
  //// Segmentation ///////////////////
  /////////////////////////////////////

  // Filters instantiation
  typename ConnectedFilterType::Pointer connectedThreshold = ConnectedFilterType::New();
  typename LabelFilterType::Pointer     labeler = LabelFilterType::New();
  typename RelabelFilterType::Pointer   relabeler = RelabelFilterType::New();
  typename ThresholdFilterType::Pointer threshold = ThresholdFilterType::New();

  //Passing seeds to the connected filter
  connectedThreshold = ConnectedFilterType::New();
  connectedThreshold->ClearSeeds();
  connectedThreshold->SetInput(mult->GetOutput());
  PointSetIteratorType it = pointSetFilter->GetOutput()->GetPoints()->Begin();
  while (it != pointSetFilter->GetOutput()->GetPoints()->End())
    {
    typename OutputImageType::IndexType index;
    index[0] = static_cast<long int>(it.Value()[0]);
    index[1] = static_cast<long int>(it.Value()[1]);
    connectedThreshold->AddSeed(index);
    ++it;
    }

  // segmentation
  connectedThreshold->SetLower(connectedThresholdValue);

  // labelling
  labeler = LabelFilterType::New();
  relabeler = RelabelFilterType::New();
  labeler->SetInput(connectedThreshold->GetOutput());
  relabeler->SetInput(labeler->GetOutput());
  relabeler->SetMinimumObjectSize(m_MinimumObjectSize);
  relabeler->Update();

  // In some cases it might happen that the whole extent of the image is segmented as a single region.
  // Since this is not desirable, we test this case here to avoid it.
  threshold = ThresholdFilterType::New();
  threshold->SetInput(relabeler->GetOutput());
  OutputPixelType num = 0;
  if (relabeler->GetNumberOfObjects() == 1)
    {
    unsigned int surface = mult->GetOutput()->GetLargestPossibleRegion().GetSize()[0]
                           * mult->GetOutput()->GetLargestPossibleRegion().GetSize()[1];
    if (relabeler->GetSizeOfObjectsInPixels()[0] == surface)
      {
      num = 0;
      }
    else
      {
      num = 1;
      }
    }
  else
    {
    num = static_cast<OutputPixelType>(relabeler->GetNumberOfObjects());
    }
  threshold->ThresholdOutside(0, num);

  // Output connection
  threshold->GraftOutput(this->GetOutput());
  threshold->Update();
  this->GraftOutput(threshold->GetOutput());
  m_NumberOfObjects = num;
}
/**
 * PrintSelf method
 */
template <class TInputImage, class TOutputImage>
void
Segmenter<TInputImage, TOutputImage>
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
  Superclass::PrintSelf(os, indent);

}
} // End namespace MorphologicalPyramid
} // End namespace otb
#endif