/usr/include/OTB-5.8/otbHillShadingFunctor.h is in libotb-dev 5.8.0+dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 | /*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef otbHillShadingFunctor_h
#define otbHillShadingFunctor_h
#include "itkNumericTraits.h"
#include "otbMath.h"
namespace otb
{
namespace Functor
{
/** \class HillShadeModulationFunctor
* \brief Modulate an image with hill shading
*
* Take an image (RGB) as input and the result of the hillshading
* (another image with the value between 0 and 1) and modulate
* the first image by the value of the hill shading.
*
* \ingroup Functor
* \example BasicFilters/HillShadingExample.cxx
*
* \ingroup OTBImageManipulation
*/
template<class TInput1, class TInput2 = TInput1, class TOutput = TInput1>
class HillShadeModulationFunctor
{
public:
HillShadeModulationFunctor() {}
~HillShadeModulationFunctor() {}
inline TOutput operator ()(const TInput1& A, const TInput2& B) const
{
TOutput out;
out.SetRed( static_cast<typename TOutput::ValueType>(static_cast<double>(A.GetRed()) * static_cast<double>(B)) );
out.SetGreen( static_cast<typename TOutput::ValueType>(static_cast<double>(A.GetGreen()) * static_cast<double>(B)) );
out.SetBlue(static_cast<typename TOutput::ValueType>(static_cast<double>(A.GetBlue()) * static_cast<double>(B)));
return out;
}
};
/** \class HillShadingFunctor
* \brief Unary neighborhood functor to compute the lambertian of a surface
*
* The light source is assumed to be at a given elevation and azimuth
* (by default \f$ \pi/4 \f$ and \f$ \pi/6 \f$ respectively). This is used to generate hill shading
* representation of relief. The output is a value between 0 and 1.
*
* \ingroup Functor
* \example BasicFilters/HillShadingExample.cxx
*
* \ingroup OTBImageManipulation
*/
template <class TNeighIter, class TInputImage, class TOutput>
class HillShadingFunctor
{
public:
typedef HillShadingFunctor Self;
typedef TNeighIter IteratorType;
typedef typename IteratorType::PixelType PixelType;
HillShadingFunctor() : m_AzimuthLight(30.0 * CONST_PI_180), m_ElevationLight(45.0 *CONST_PI_180),
m_XRes(100.0), m_YRes(100.0), m_Scale(0.1)
{
m_SinElev = vcl_sin(m_ElevationLight);
m_CosElev = vcl_cos(m_ElevationLight);
m_SinAz = vcl_sin(m_AzimuthLight);
m_CosAz = vcl_cos(m_AzimuthLight);
}
~HillShadingFunctor() {}
double GetXRes() const
{
return m_XRes;
}
double GetYRes() const
{
return m_YRes;
}
void SetXRes(double res)
{
m_XRes = vcl_abs(res);
}
void SetYRes(double res)
{
m_YRes = vcl_abs(res);
}
double GetScale() const
{
return m_Scale;
}
void SetScale(double scale)
{
m_Scale = scale;
}
double GetAzimuthLight() const
{
return m_AzimuthLight;
}
void SetAzimuthLight(double az)
{
m_AzimuthLight = az;
m_SinAz = vcl_sin(m_AzimuthLight);
m_CosAz = vcl_cos(m_AzimuthLight);
}
double GetElevationLight() const
{
return m_ElevationLight;
}
void SetElevationLight(double el)
{
m_ElevationLight = el;
m_SinElev = vcl_sin(m_ElevationLight);
m_CosElev = vcl_cos(m_ElevationLight);
}
inline TOutput operator ()(const TNeighIter& it) const
{
const typename IteratorType::OffsetType LEFT = {{-1, 0}};
const typename IteratorType::OffsetType RIGHT = {{1, 0}};
const typename IteratorType::OffsetType UP = {{0, -1}};
const typename IteratorType::OffsetType DOWN = {{0, 1}};
const typename IteratorType::OffsetType LEFTUP = {{-1, -1}};
const typename IteratorType::OffsetType RIGHTDOWN = {{1, 1}};
const typename IteratorType::OffsetType RIGHTUP = {{1, -1}};
const typename IteratorType::OffsetType LEFTDOWN = {{-1, 1}};
// const typename IteratorType::OffsetType CENTER ={{0, 0}};
float xSlope =
((makeValid(it.GetPixel(LEFTUP)) + 2 * makeValid(it.GetPixel(LEFT)) + makeValid(it.GetPixel(LEFTDOWN)))
- (makeValid(it.GetPixel(RIGHTUP)) + 2 * makeValid(it.GetPixel(RIGHT)) + makeValid(it.GetPixel(RIGHTDOWN))))
/ (m_XRes * m_Scale);
// - as the azimuth is given compared to y axis pointing up
float ySlope = -((makeValid(it.GetPixel(LEFTUP)) + 2 * makeValid(it.GetPixel(UP)) + makeValid(it.GetPixel(RIGHTUP)))
- (makeValid(it.GetPixel(LEFTDOWN)) + 2 * makeValid(it.GetPixel(DOWN)) + makeValid(it.GetPixel(RIGHTDOWN)))
)
/ (m_YRes * m_Scale);
// permutation between x and y as the azimuth angle is given compared to the north-south axis
float lambertian = ((m_CosElev * m_CosAz * ySlope) + (m_CosElev * m_SinAz * xSlope) + m_SinElev)
/ vcl_sqrt(xSlope * xSlope + ySlope * ySlope + 1);
return (lambertian + 1) / 2; //normalize between 0 and 1
}
private:
inline PixelType makeValid(PixelType v) const
{
return v < itk::NumericTraits<PixelType>::Zero ? itk::NumericTraits<PixelType>::Zero : v;
}
double m_AzimuthLight; // in radian
double m_ElevationLight; // in radian
double m_XRes; // assumed to be positive provided in m
double m_YRes; // assumed to be positive provided in m
double m_Scale;
// precomputed parameters to avoid the sin() cos() call for each pixel
double m_SinElev;
double m_CosElev;
double m_SinAz;
double m_CosAz;
};
}
}
#endif
|