This file is indexed.

/usr/share/doc/libntl-dev/NTL/mat_lzz_pE.txt is in libntl-dev 9.9.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
/**************************************************************************\

MODULE: mat_zz_pE

SUMMARY:

Defines the class mat_zz_pE.

\**************************************************************************/


#include <NTL/matrix.h>
#include <NTL/vec_vec_lzz_pE.h>


typedef Mat<zz_pE> mat_zz_pE; // backward compatibility

void add(mat_zz_pE& X, const mat_zz_pE& A, const mat_zz_pE& B); 
// X = A + B

void sub(mat_zz_pE& X, const mat_zz_pE& A, const mat_zz_pE& B); 
// X = A - B

void negate(mat_zz_pE& X, const mat_zz_pE& A); 
// X = - A

void mul(mat_zz_pE& X, const mat_zz_pE& A, const mat_zz_pE& B); 
// X = A * B

void mul(vec_zz_pE& x, const mat_zz_pE& A, const vec_zz_pE& b); 
// x = A * b

void mul(vec_zz_pE& x, const vec_zz_pE& a, const mat_zz_pE& B); 
// x = a * B

void mul(mat_zz_pE& X, const mat_zz_pE& A, const zz_pE& b);
void mul(mat_zz_pE& X, const mat_zz_pE& A, const zz_p& b);
void mul(mat_zz_pE& X, const mat_zz_pE& A, long b);
// X = A * b

void mul(mat_zz_pE& X, const zz_pE& a, const mat_zz_pE& B);
void mul(mat_zz_pE& X, const zz_p& a, const mat_zz_pE& B);
void mul(mat_zz_pE& X, long a, const mat_zz_pE& B);
// X = a * B


void determinant(zz_pE& d, const mat_zz_pE& A);
zz_pE determinant(const mat_zz_pE& a); 
// d = determinant(A)


void transpose(mat_zz_pE& X, const mat_zz_pE& A);
mat_zz_pE transpose(const mat_zz_pE& A);
// X = transpose of A

void solve(zz_pE& d, vec_zz_pE& x, const mat_zz_pE& A, const vec_zz_pE& b);
// A is an n x n matrix, b is a length n vector.  Computes d =
// determinant(A).  If d != 0, solves x*A = b.

void solve(zz_pE& d, const mat_zz_pE& A, vec_zz_pE& x, const vec_zz_pE& b);
// A is an n x n matrix, b is a length n vector.  Computes d = determinant(A).
// If d != 0, solves A*x = b (so x and b are treated as a column vectors).

void inv(zz_pE& d, mat_zz_pE& X, const mat_zz_pE& A);
// A is an n x n matrix.  Computes d = determinant(A).  If d != 0,
// computes X = A^{-1}.

void sqr(mat_zz_pE& X, const mat_zz_pE& A);
mat_zz_pE sqr(const mat_zz_pE& A);
// X = A*A   

void inv(mat_zz_pE& X, const mat_zz_pE& A);
mat_zz_pE inv(const mat_zz_pE& A);
// X = A^{-1}; error is raised if A is  singular

void power(mat_zz_pE& X, const mat_zz_pE& A, const ZZ& e);
mat_zz_pE power(const mat_zz_pE& A, const ZZ& e);

void power(mat_zz_pE& X, const mat_zz_pE& A, long e);
mat_zz_pE power(const mat_zz_pE& A, long e);
// X = A^e; e may be negative (in which case A must be nonsingular).

void ident(mat_zz_pE& X, long n);
mat_zz_pE ident_mat_zz_pE(long n);
// X = n x n identity matrix

long IsIdent(const mat_zz_pE& A, long n);
// test if A is the n x n identity matrix

void diag(mat_zz_pE& X, long n, const zz_pE& d);
mat_zz_pE diag(long n, const zz_pE& d);
// X = n x n diagonal matrix with d on diagonal

long IsDiag(const mat_zz_pE& A, long n, const zz_pE& d);
// test if X is an  n x n diagonal matrix with d on diagonal




long gauss(mat_zz_pE& M);
long gauss(mat_zz_pE& M, long w);
// Performs unitary row operations so as to bring M into row echelon
// form.  If the optional argument w is supplied, stops when first w
// columns are in echelon form.  The return value is the rank (or the
// rank of the first w columns).

void image(mat_zz_pE& X, const mat_zz_pE& A);
// The rows of X are computed as basis of A's row space.  X is is row
// echelon form

void kernel(mat_zz_pE& X, const mat_zz_pE& A);
// Computes a basis for the kernel of the map x -> x*A. where x is a
// row vector.



// miscellaneous:

void clear(mat_zz_pE& a);
// x = 0 (dimension unchanged)

long IsZero(const mat_zz_pE& a);
// test if a is the zero matrix (any dimension)


// operator notation:

mat_zz_pE operator+(const mat_zz_pE& a, const mat_zz_pE& b);
mat_zz_pE operator-(const mat_zz_pE& a, const mat_zz_pE& b);
mat_zz_pE operator*(const mat_zz_pE& a, const mat_zz_pE& b);

mat_zz_pE operator-(const mat_zz_pE& a);


// matrix/scalar multiplication:

mat_zz_pE operator*(const mat_zz_pE& a, const zz_pE& b);
mat_zz_pE operator*(const mat_zz_pE& a, const zz_p& b);
mat_zz_pE operator*(const mat_zz_pE& a, long b);

mat_zz_pE operator*(const zz_pE& a, const mat_zz_pE& b);
mat_zz_pE operator*(const zz_p& a, const mat_zz_pE& b);
mat_zz_pE operator*(long a, const mat_zz_pE& b);

// matrix/vector multiplication:

vec_zz_pE operator*(const mat_zz_pE& a, const vec_zz_pE& b);

vec_zz_pE operator*(const vec_zz_pE& a, const mat_zz_pE& b);


// assignment operator notation:

mat_zz_pE& operator+=(mat_zz_pE& x, const mat_zz_pE& a);
mat_zz_pE& operator-=(mat_zz_pE& x, const mat_zz_pE& a);
mat_zz_pE& operator*=(mat_zz_pE& x, const mat_zz_pE& a);

mat_zz_pE& operator*=(mat_zz_pE& x, const zz_pE& a);
mat_zz_pE& operator*=(mat_zz_pE& x, const zz_p& a);
mat_zz_pE& operator*=(mat_zz_pE& x, long a);

vec_zz_pE& operator*=(vec_zz_pE& x, const mat_zz_pE& a);