This file is indexed.

/usr/include/deal.II/base/quadrature.h is in libdeal.ii-dev 8.4.2-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
// ---------------------------------------------------------------------
//
// Copyright (C) 1998 - 2015 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef dealii__quadrature_h
#define dealii__quadrature_h


#include <deal.II/base/config.h>
#include <deal.II/base/point.h>
#include <deal.II/base/subscriptor.h>
#include <vector>

DEAL_II_NAMESPACE_OPEN

/*!@addtogroup Quadrature */
/*@{*/

/**
 * Base class for quadrature formulae in arbitrary dimensions. This class
 * stores quadrature points and weights on the unit line [0,1], unit square
 * [0,1]x[0,1], etc.
 *
 * There are a number of derived classes, denoting concrete integration
 * formulae. Their names names prefixed by <tt>Q</tt>. Refer to the list of
 * derived classes for more details.
 *
 * The schemes for higher dimensions are typically tensor products of the one-
 * dimensional formulae, but refer to the section on implementation detail
 * below.
 *
 * In order to allow for dimension independent programming, a quadrature
 * formula of dimension zero exists. Since an integral over zero dimensions is
 * the evaluation at a single point, any constructor of such a formula
 * initializes to a single quadrature point with weight one. Access to the
 * weight is possible, while access to the quadrature point is not permitted,
 * since a Point of dimension zero contains no information. The main purpose
 * of these formulae is their use in QProjector, which will create a useful
 * formula of dimension one out of them.
 *
 * <h3>Mathematical background</h3>
 *
 * For each quadrature formula we denote by <tt>m</tt>, the maximal degree of
 * polynomials integrated exactly. This number is given in the documentation
 * of each formula. The order of the integration error is <tt>m+1</tt>, that
 * is, the error is the size of the cell to the <tt>m+1</tt> by the Bramble-
 * Hilbert Lemma. The number <tt>m</tt> is to be found in the documentation of
 * each concrete formula. For the optimal formulae QGauss we have $m = 2N-1$,
 * where N is the constructor parameter to QGauss. The tensor product formulae
 * are exact on tensor product polynomials of degree <tt>m</tt> in each space
 * direction, but they are still only of <tt>m+1</tt>st order.
 *
 * <h3>Implementation details</h3>
 *
 * Most integration formulae in more than one space dimension are tensor
 * products of quadrature formulae in one space dimension, or more generally
 * the tensor product of a formula in <tt>(dim-1)</tt> dimensions and one in
 * one dimension. There is a special constructor to generate a quadrature
 * formula from two others.  For example, the QGauss@<dim@> formulae include
 * <i>N<sup>dim</sup></i> quadrature points in <tt>dim</tt> dimensions, where
 * N is the constructor parameter of QGauss.
 *
 * @note Instantiations for this template are provided for dimensions 0, 1, 2,
 * and 3 (see the section on
 * @ref Instantiations).
 *
 * @author Wolfgang Bangerth, Guido Kanschat, 1998, 1999, 2000, 2005, 2009
 */
template <int dim>
class Quadrature : public Subscriptor
{
public:
  /**
   * Define a typedef for a quadrature that acts on an object of one dimension
   * less. For cells, this would then be a face quadrature.
   */
  typedef Quadrature<dim-1> SubQuadrature;

  /**
   * Constructor.
   *
   * This constructor is marked as explicit to avoid involuntary accidents
   * like in <code>hp::QCollection@<dim@> q_collection(3)</code> where
   * <code>hp::QCollection@<dim@> q_collection(QGauss@<dim@>(3))</code> was
   * meant.
   */
  explicit Quadrature (const unsigned int n_quadrature_points = 0);

  /**
   * Build this quadrature formula as the tensor product of a formula in a
   * dimension one less than the present and a formula in one dimension.
   *
   * <tt>SubQuadrature<dim>::type</tt> expands to <tt>Quadrature<dim-1></tt>.
   */
  Quadrature (const SubQuadrature &,
              const Quadrature<1> &);

  /**
   * Build this quadrature formula as the <tt>dim</tt>-fold tensor product of
   * a formula in one dimension.
   *
   * Assuming that the points in the one-dimensional rule are in ascending
   * order, the points of the resulting rule are ordered lexicographically
   * with <i>x</i> running fastest.
   *
   * In order to avoid a conflict with the copy constructor in 1d, we let the
   * argument be a 0d quadrature formula for dim==1, and a 1d quadrature
   * formula for all other space dimensions.
   */
  explicit Quadrature (const Quadrature<dim != 1 ? 1 : 0> &quadrature_1d);

  /**
   * Copy constructor.
   */
  Quadrature (const Quadrature<dim> &q);

  /**
   * Construct a quadrature formula from given vectors of quadrature points
   * (which should really be in the unit cell) and the corresponding weights.
   * You will want to have the weights sum up to one, but this is not checked.
   */
  Quadrature (const std::vector<Point<dim> > &points,
              const std::vector<double>      &weights);

  /**
   * Construct a dummy quadrature formula from a list of points, with weights
   * set to infinity. The resulting object is therefore not meant to actually
   * perform integrations, but rather to be used with FEValues objects in
   * order to find the position of some points (the quadrature points in this
   * object) on the transformed cell in real space.
   */
  Quadrature (const std::vector<Point<dim> > &points);

  /**
   * Constructor for a one-point quadrature. Sets the weight of this point to
   * one.
   */
  Quadrature (const Point<dim> &point);

  /**
   * Virtual destructor.
   */
  virtual ~Quadrature ();

  /**
   * Assignment operator. Copies contents of #weights and #quadrature_points
   * as well as size.
   */
  Quadrature &operator = (const Quadrature<dim> &);

  /**
   * Test for equality of two quadratures.
   */
  bool operator == (const Quadrature<dim> &p) const;

  /**
   * Set the quadrature points and weights to the values provided in the
   * arguments.
   */
  void initialize(const std::vector<Point<dim> > &points,
                  const std::vector<double>      &weights);

  /**
   * Number of quadrature points.
   */
  unsigned int size () const;

  /**
   * Return the <tt>i</tt>th quadrature point.
   */
  const Point<dim> &point (const unsigned int i) const;

  /**
   * Return a reference to the whole array of quadrature points.
   */
  const std::vector<Point<dim> > &get_points () const;

  /**
   * Return the weight of the <tt>i</tt>th quadrature point.
   */
  double weight (const unsigned int i) const;

  /**
   * Return a reference to the whole array of weights.
   */
  const std::vector<double> &get_weights () const;

  /**
   * Determine an estimate for the memory consumption (in bytes) of this
   * object.
   */
  std::size_t memory_consumption () const;

  /**
   * Write or read the data of this object to or from a stream for the purpose
   * of serialization.
   */
  template <class Archive>
  void serialize (Archive &ar, const unsigned int version);

protected:
  /**
   * List of quadrature points. To be filled by the constructors of derived
   * classes.
   */
  std::vector<Point<dim> > quadrature_points;

  /**
   * List of weights of the quadrature points.  To be filled by the
   * constructors of derived classes.
   */
  std::vector<double>      weights;
};


/**
 * Quadrature formula implementing anisotropic distributions of quadrature
 * points on the reference cell. To this end, the tensor product of
 * <tt>dim</tt> one-dimensional quadrature formulas is generated.
 *
 * @note Each constructor can only be used in the dimension matching the
 * number of arguments.
 *
 * @author Guido Kanschat, 2005
 */
template <int dim>
class QAnisotropic : public Quadrature<dim>
{
public:
  /**
   * Constructor for a one-dimensional formula. This one just copies the given
   * quadrature rule.
   */
  QAnisotropic(const Quadrature<1> &qx);

  /**
   * Constructor for a two-dimensional formula.
   */
  QAnisotropic(const Quadrature<1> &qx,
               const Quadrature<1> &qy);

  /**
   * Constructor for a three-dimensional formula.
   */
  QAnisotropic(const Quadrature<1> &qx,
               const Quadrature<1> &qy,
               const Quadrature<1> &qz);
};


/**
 * Quadrature formula constructed by iteration of another quadrature formula
 * in each direction. In more than one space dimension, the resulting
 * quadrature formula is constructed in the usual way by building the tensor
 * product of the respective iterated quadrature formula in one space
 * dimension.
 *
 * In one space dimension, the given base formula is copied and scaled onto a
 * given number of subintervals of length <tt>1/n_copies</tt>. If the
 * quadrature formula uses both end points of the unit interval, then in the
 * interior of the iterated quadrature formula there would be quadrature
 * points which are used twice; we merge them into one with a weight which is
 * the sum of the weights of the left- and the rightmost quadrature point.
 *
 * Since all dimensions higher than one are built up by tensor products of one
 * dimensional and <tt>dim-1</tt> dimensional quadrature formulae, the
 * argument given to the constructor needs to be a quadrature formula in one
 * space dimension, rather than in <tt>dim</tt> dimensions.
 *
 * The aim of this class is to provide a low order formula, where the error
 * constant can be tuned by increasing the number of quadrature points. This
 * is useful in integrating non-differentiable functions on cells.
 *
 * @author Wolfgang Bangerth 1999
 */
template <int dim>
class QIterated : public Quadrature<dim>
{
public:
  /**
   * Constructor. Iterate the given quadrature formula <tt>n_copies</tt> times
   * in each direction.
   */
  QIterated (const Quadrature<1> &base_quadrature,
             const unsigned int   n_copies);

  /**
   * Exception
   */
  DeclExceptionMsg (ExcInvalidQuadratureFormula,
                    "The quadrature formula you provided cannot be used "
                    "as the basis for iteration.");
private:
  /**
   * Check whether the given quadrature formula has quadrature points at the
   * left and right end points of the interval.
   */
  static bool
  uses_both_endpoints (const Quadrature<1> &base_quadrature);
};



/*@}*/

#ifndef DOXYGEN

// -------------------  inline and template functions ----------------


template<int dim>
inline
unsigned int
Quadrature<dim>::size () const
{
  return weights.size();
}


template <int dim>
inline
const Point<dim> &
Quadrature<dim>::point (const unsigned int i) const
{
  AssertIndexRange(i, size());
  return quadrature_points[i];
}



template <int dim>
double
Quadrature<dim>::weight (const unsigned int i) const
{
  AssertIndexRange(i, size());
  return weights[i];
}



template <int dim>
inline
const std::vector<Point<dim> > &
Quadrature<dim>::get_points () const
{
  return quadrature_points;
}



template <int dim>
inline
const std::vector<double> &
Quadrature<dim>::get_weights () const
{
  return weights;
}



template <int dim>
template <class Archive>
inline
void
Quadrature<dim>::serialize (Archive &ar, const unsigned int)
{
  // forward to serialization
  // function in the base class.
  ar   &static_cast<Subscriptor &>(*this);

  ar &quadrature_points &weights;
}



/* -------------- declaration of explicit specializations ------------- */

template <>
Quadrature<0>::Quadrature (const unsigned int);
template <>
Quadrature<0>::Quadrature (const Quadrature<-1> &,
                           const Quadrature<1> &);
template <>
Quadrature<0>::Quadrature (const Quadrature<1> &);
template <>
Quadrature<0>::~Quadrature ();

template <>
Quadrature<1>::Quadrature (const Quadrature<0> &,
                           const Quadrature<1> &);

template <>
Quadrature<1>::Quadrature (const Quadrature<0> &);

#endif // DOXYGEN
DEAL_II_NAMESPACE_CLOSE

#endif