This file is indexed.

/usr/include/deal.II/base/mpi.h is in libdeal.ii-dev 8.4.2-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
// ---------------------------------------------------------------------
//
// Copyright (C) 2011 - 2016 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef dealii__mpi_h
#define dealii__mpi_h

#include <deal.II/base/config.h>
#include <vector>

#if !defined(DEAL_II_WITH_MPI) && !defined(DEAL_II_WITH_PETSC)
// without MPI, we would still like to use
// some constructs with MPI data
// types. Therefore, create some dummies
typedef int MPI_Comm;
const int MPI_COMM_SELF = 0;
typedef int MPI_Datatype;
typedef int MPI_Op;
namespace MPI
{
  static const unsigned int UNSIGNED = 0;
  static const unsigned int LONG_DOUBLE = 0;
  static const unsigned int LONG_DOUBLE_COMPLEX = 0;
  static const unsigned int MAX = 0;
  static const unsigned int MIN = 0;
  static const unsigned int SUM = 0;
}
static const int MPI_MIN = 0;
static const int MPI_MAX = 0;
static const int MPI_SUM = 0;
#endif

DEAL_II_NAMESPACE_OPEN


//Forward type declarations to allow MPI sums over tensorial types
template <int rank, int dim, typename Number> class Tensor;
template <int rank, int dim, typename Number> class SymmetricTensor;

//Forward type declaration to allow MPI sums over Vector<number> type
template <typename Number> class Vector;


namespace Utilities
{
  /**
   * A namespace for utility functions that abstract certain operations using
   * the Message Passing Interface (MPI) or provide fallback operations in
   * case deal.II is configured not to use MPI at all.
   *
   * @ingroup utilities
   */
  namespace MPI
  {
    /**
     * Return the number of MPI processes there exist in the given
     * @ref GlossMPICommunicator "communicator"
     * object. If this is a sequential job, it returns 1.
     */
    unsigned int n_mpi_processes (const MPI_Comm &mpi_communicator);

    /**
     * Return the
     * @ref GlossMPIRank "rank of the present MPI process"
     * in the space of processes described by the given
     * @ref GlossMPICommunicator "communicator".
     * This will be a unique value for each process between zero and (less
     * than) the number of all processes (given by get_n_mpi_processes()).
     */
    unsigned int this_mpi_process (const MPI_Comm &mpi_communicator);

    /**
     * Consider an unstructured communication pattern where every process in
     * an MPI universe wants to send some data to a subset of the other
     * processors. To do that, the other processors need to know who to expect
     * messages from. This function computes this information.
     *
     * @param mpi_comm A
     * @ref GlossMPICommunicator "communicator"
     * that describes the processors that are going to communicate with each
     * other.
     *
     * @param destinations The list of processors the current process wants to
     * send information to. This list need not be sorted in any way. If it
     * contains duplicate entries that means that multiple messages are
     * intended for a given destination.
     *
     * @return A list of processors that have indicated that they want to send
     * something to the current processor. The resulting list is not sorted.
     * It may contain duplicate entries if processors enter the same
     * destination more than once in their destinations list.
     */
    std::vector<unsigned int>
    compute_point_to_point_communication_pattern (const MPI_Comm &mpi_comm,
                                                  const std::vector<unsigned int> &destinations);

    /**
     * Given a
     * @ref GlossMPICommunicator "communicator",
     * generate a new communicator that contains the same set of processors
     * but that has a different, unique identifier.
     *
     * This functionality can be used to ensure that different objects, such
     * as distributed matrices, each have unique communicators over which they
     * can interact without interfering with each other.
     *
     * When no longer needed, the communicator created here needs to be
     * destroyed using <code>MPI_Comm_free</code>.
     */
    MPI_Comm duplicate_communicator (const MPI_Comm &mpi_communicator);

    /**
     * Return the sum over all processors of the value @p t. This function is
     * collective over all processors given in the
     * @ref GlossMPICommunicator "communicator".
     * If deal.II is not configured for use of MPI, this function simply
     * returns the value of @p t. This function corresponds to the
     * <code>MPI_Allreduce</code> function, i.e. all processors receive the
     * result of this operation.
     *
     * @note Sometimes, not all processors need a result and in that case one
     * would call the <code>MPI_Reduce</code> function instead of the
     * <code>MPI_Allreduce</code> function. The latter is at most twice as
     * expensive, so if you are concerned about performance, it may be
     * worthwhile investigating whether your algorithm indeed needs the result
     * everywhere.
     *
     * @note This function is only implemented for certain template arguments
     * <code>T</code>, namely <code>float, double, int, unsigned int</code>.
     */
    template <typename T>
    T sum (const T &t,
           const MPI_Comm &mpi_communicator);

    /**
     * Like the previous function, but take the sums over the elements of an
     * array of length N. In other words, the i-th element of the results
     * array is the sum over the i-th entries of the input arrays from each
     * processor.
     *
     * Input and output arrays may be the same.
     */
    template <typename T, unsigned int N>
    inline
    void sum (const T (&values)[N],
              const MPI_Comm &mpi_communicator,
              T (&sums)[N]);

    /**
     * Like the previous function, but take the sums over the elements of a
     * std::vector. In other words, the i-th element of the results array is
     * the sum over the i-th entries of the input arrays from each processor.
     *
     * Input and output vectors may be the same.
     */
    template <typename T>
    inline
    void sum (const std::vector<T> &values,
              const MPI_Comm &mpi_communicator,
              std::vector<T> &sums);

    /**
     * Like the previous function, but take the sums over the elements of a
     * Vector<T>.
     *
     * Input and output vectors may be the same.
     */
    template <typename T>
    inline
    void sum (const Vector<T> &values,
              const MPI_Comm &mpi_communicator,
              Vector<T> &sums);


    /**
     * Perform an MPI sum of the entries of a symmetric tensor.
     *
     * @relates SymmetricTensor
     */
    template <int rank, int dim, typename Number>
    inline
    SymmetricTensor<rank,dim,Number>
    sum (const SymmetricTensor<rank,dim,Number> &local,
         const MPI_Comm &mpi_communicator);

    /**
     * Perform an MPI sum of the entries of a tensor.
     *
     * @relates Tensor
     */
    template <int rank, int dim, typename Number>
    inline
    Tensor<rank,dim,Number>
    sum (const Tensor<rank,dim,Number> &local,
         const MPI_Comm &mpi_communicator);

    /**
     * Return the maximum over all processors of the value @p t. This function
     * is collective over all processors given in the
     * @ref GlossMPICommunicator "communicator".
     * If deal.II is not configured for use of MPI, this function simply
     * returns the value of @p t. This function corresponds to the
     * <code>MPI_Allreduce</code> function, i.e. all processors receive the
     * result of this operation.
     *
     * @note Sometimes, not all processors need a result and in that case one
     * would call the <code>MPI_Reduce</code> function instead of the
     * <code>MPI_Allreduce</code> function. The latter is at most twice as
     * expensive, so if you are concerned about performance, it may be
     * worthwhile investigating whether your algorithm indeed needs the result
     * everywhere.
     *
     * @note This function is only implemented for certain template arguments
     * <code>T</code>, namely <code>float, double, int, unsigned int</code>.
     */
    template <typename T>
    T max (const T &t,
           const MPI_Comm &mpi_communicator);

    /**
     * Like the previous function, but take the maxima over the elements of an
     * array of length N. In other words, the i-th element of the results
     * array is the maximum of the i-th entries of the input arrays from each
     * processor.
     *
     * Input and output arrays may be the same.
     */
    template <typename T, unsigned int N>
    inline
    void max (const T (&values)[N],
              const MPI_Comm &mpi_communicator,
              T (&maxima)[N]);

    /**
     * Like the previous function, but take the maximum over the elements of a
     * std::vector. In other words, the i-th element of the results array is
     * the maximum over the i-th entries of the input arrays from each
     * processor.
     *
     * Input and output vectors may be the same.
     */
    template <typename T>
    inline
    void max (const std::vector<T> &values,
              const MPI_Comm &mpi_communicator,
              std::vector<T> &maxima);

    /**
     * Return the minimum over all processors of the value @p t. This function
     * is collective over all processors given in the
     * @ref GlossMPICommunicator "communicator".
     * If deal.II is not configured for use of MPI, this function simply
     * returns the value of @p t. This function corresponds to the
     * <code>MPI_Allreduce</code> function, i.e. all processors receive the
     * result of this operation.
     *
     * @note Sometimes, not all processors need a result and in that case one
     * would call the <code>MPI_Reduce</code> function instead of the
     * <code>MPI_Allreduce</code> function. The latter is at most twice as
     * expensive, so if you are concerned about performance, it may be
     * worthwhile investigating whether your algorithm indeed needs the result
     * everywhere.
     *
     * @note This function is only implemented for certain template arguments
     * <code>T</code>, namely <code>float, double, int, unsigned int</code>.
     */
    template <typename T>
    T min (const T &t,
           const MPI_Comm &mpi_communicator);

    /**
     * Like the previous function, but take the minima over the elements of an
     * array of length N. In other words, the i-th element of the results
     * array is the minimum of the i-th entries of the input arrays from each
     * processor.
     *
     * Input and output arrays may be the same.
     */
    template <typename T, unsigned int N>
    inline
    void min (const T (&values)[N],
              const MPI_Comm &mpi_communicator,
              T (&minima)[N]);

    /**
     * Like the previous function, but take the minimum over the elements of a
     * std::vector. In other words, the i-th element of the results array is
     * the minimum over the i-th entries of the input arrays from each
     * processor.
     *
     * Input and output vectors may be the same.
     */
    template <typename T>
    inline
    void min (const std::vector<T> &values,
              const MPI_Comm &mpi_communicator,
              std::vector<T> &minima);


    /**
     * Data structure to store the result of min_max_avg().
     */
    struct MinMaxAvg
    {
      // Note: We assume a POD property of this struct in the MPI calls in
      // min_max_avg
      double sum;
      double min;
      double max;
      unsigned int min_index;
      unsigned int max_index;
      double avg;
    };

    /**
     * Returns sum, average, minimum, maximum, processor id of minimum and
     * maximum as a collective operation of on the given MPI
     * @ref GlossMPICommunicator "communicator"
     * @p mpi_communicator. Each processor's value is given in @p my_value and
     * the result will be returned. The result is available on all machines.
     *
     * @note Sometimes, not all processors need a result and in that case one
     * would call the <code>MPI_Reduce</code> function instead of the
     * <code>MPI_Allreduce</code> function. The latter is at most twice as
     * expensive, so if you are concerned about performance, it may be
     * worthwhile investigating whether your algorithm indeed needs the result
     * everywhere.
     */
    MinMaxAvg
    min_max_avg (const double my_value,
                 const MPI_Comm &mpi_communicator);



    /**
     * A class that is used to initialize the MPI system at the beginning of a
     * program and to shut it down again at the end. It also allows you to
     * control the number threads used in each MPI task.
     *
     * If deal.II is configured with PETSc, the library will be
     * initialized in the beginning and destroyed at the end automatically
     * (internally by calling PetscInitialize() and PetscFinalize()).
     *
     * If deal.II is configured with p4est, that library will also be
     * initialized in the beginning, and destroyed at the end automatically
     * (internally by calling sc_init(), p4est_init(), and sc_finalize()).
     *
     * If a program uses MPI one would typically just create an object of this
     * type at the beginning of <code>main()</code>. The constructor of this
     * class then runs <code>MPI_Init()</code> with the given arguments. At
     * the end of the program, the compiler will invoke the destructor of this
     * object which in turns calls <code>MPI_Finalize</code> to shut down the
     * MPI system.
     *
     * This class is used in step-32, for example.
     */
    class MPI_InitFinalize
    {
    public:
      /**
       * Initialize MPI (and, if deal.II was configured to use it, PETSc) and
       * set the number of threads used by deal.II (via the underlying
       * Threading Building Blocks library) to the given parameter.
       *
       * @param[in,out] argc A reference to the 'argc' argument passed to
       * main. This argument is used to initialize MPI (and, possibly, PETSc)
       * as they read arguments from the command line.
       * @param[in,out] argv A reference to the 'argv' argument passed to
       * main.
       * @param[in] max_num_threads The maximal number of threads this MPI
       * process should utilize. If this argument is set to
       * numbers::invalid_unsigned_int (the default value), then the number of
       * threads is determined automatically in the following way: the number
       * of threads to run on this MPI process is set in such a way that all
       * of the cores in your node are spoken for. In other words, if you have
       * started one MPI process per node, setting this argument is equivalent
       * to setting it to the number of cores present in the node this MPI
       * process runs on. If you have started as many MPI processes per node
       * as there are cores on each node, then this is equivalent to passing 1
       * as the argument. On the other hand, if, for example, you start 4 MPI
       * processes on each 16-core node, then this option will start 4 worker
       * threads for each node. If you start 3 processes on an 8 core node,
       * then they will start 3, 3 and 2 threads, respectively.
       *
       * @note This function calls MultithreadInfo::set_thread_limit() with
       * either @p max_num_threads or, following the discussion above, a
       * number of threads equal to the number of cores allocated to this MPI
       * process. However, MultithreadInfo::set_thread_limit() in turn also
       * evaluates the environment variable DEAL_II_NUM_THREADS. Finally, the
       * worker threads can only be created on cores to which the current MPI
       * process has access to; some MPI implementations limit the number of
       * cores each process has access to to one or a subset of cores in order
       * to ensure better cache behavior. Consequently, the number of threads
       * that will really be created will be the minimum of the argument
       * passed here, the environment variable (if set), and the number of
       * cores accessible to the thread.
       *
       * @note MultithreadInfo::set_thread_limit() can only work if it is
       * called before any threads are created. The safest place for a call to
       * it is therefore at the beginning of <code>main()</code>.
       * Consequently, this extends to the current class: the best place to
       * create an object of this type is also at or close to the top of
       * <code>main()</code>.
       */
      MPI_InitFinalize (int    &argc,
                        char ** &argv,
                        const unsigned int max_num_threads = numbers::invalid_unsigned_int);

      /**
       * Destructor. Calls <tt>MPI_Finalize()</tt> in case this class owns the
       * MPI process.
       */
      ~MPI_InitFinalize();
    };

    /**
     * Return whether (i) deal.II has been compiled to support MPI (for
     * example by compiling with <code>CXX=mpiCC</code>) and if so whether
     * (ii) <code>MPI_Init()</code> has been called (for example using the
     * Utilities::MPI::MPI_InitFinalize class). In other words, the result
     * indicates whether the current job is running under MPI.
     *
     * @note The function does not take into account whether an MPI job
     * actually runs on more than one processor or is, in fact, a single-node
     * job that happens to run under MPI.
     */
    bool job_supports_mpi ();

    namespace internal
    {
#ifdef DEAL_II_WITH_MPI
      /**
       * Return the corresponding MPI data type id for the argument given.
       */
      inline MPI_Datatype mpi_type_id (const int *)
      {
        return MPI_INT;
      }


      inline MPI_Datatype mpi_type_id (const long int *)
      {
        return MPI_LONG;
      }


      inline MPI_Datatype mpi_type_id (const unsigned int *)
      {
        return MPI_UNSIGNED;
      }


      inline MPI_Datatype mpi_type_id (const unsigned long int *)
      {
        return MPI_UNSIGNED_LONG;
      }


      inline MPI_Datatype mpi_type_id (const unsigned long long int *)
      {
        return MPI_UNSIGNED_LONG_LONG;
      }


      inline MPI_Datatype mpi_type_id (const float *)
      {
        return MPI_FLOAT;
      }


      inline MPI_Datatype mpi_type_id (const double *)
      {
        return MPI_DOUBLE;
      }


      inline MPI_Datatype mpi_type_id (const long double *)
      {
        return MPI_LONG_DOUBLE;
      }
#endif

      template <typename T>
      inline
      T all_reduce (const MPI_Op &mpi_op,
                    const T &t,
                    const MPI_Comm &mpi_communicator)
      {
#ifdef DEAL_II_WITH_MPI
        if (job_supports_mpi())
          {
            T output;
            MPI_Allreduce (const_cast<void *>(static_cast<const void *>(&t)),
                           &output, 1, internal::mpi_type_id(&t), mpi_op,
                           mpi_communicator);
            return output;
          }
        else
#endif
          {
            (void)mpi_op;
            (void)mpi_communicator;
            return t;
          }
      }

      template <typename T, unsigned int N>
      inline
      void all_reduce (const MPI_Op &mpi_op,
                       const T (&values)[N],
                       const MPI_Comm &mpi_communicator,
                       T (&output)[N])
      {
#ifdef DEAL_II_WITH_MPI
        if (job_supports_mpi())
          {
            MPI_Allreduce ((&values[0] != &output[0]
                            ?
                            const_cast<void *>(static_cast<const void *>(&values[0]))
                            :
                            MPI_IN_PLACE),
                           &output[0], N, internal::mpi_type_id(values), mpi_op,
                           mpi_communicator);
          }
        else
#endif
          {
            (void)mpi_op;
            (void)mpi_communicator;
            for (unsigned int i=0; i<N; ++i)
              output[i] = values[i];
          }
      }

      template <typename T>
      inline
      void all_reduce (const MPI_Op &mpi_op,
                       const std::vector<T> &values,
                       const MPI_Comm       &mpi_communicator,
                       std::vector<T>       &output)
      {
#ifdef DEAL_II_WITH_MPI
        if (job_supports_mpi())
          {
            output.resize (values.size());
            MPI_Allreduce ((&values[0] != &output[0]
                            ?
                            const_cast<void *>(static_cast<const void *>(&values[0]))
                            :
                            MPI_IN_PLACE),
                           &output[0], values.size(), internal::mpi_type_id((T *)0), mpi_op,
                           mpi_communicator);
          }
        else
#endif
          {
            (void)mpi_op;
            (void)mpi_communicator;
            output = values;
          }
      }

      template <typename T>
      inline
      void all_reduce (const MPI_Op    &mpi_op,
                       const Vector<T> &values,
                       const MPI_Comm  &mpi_communicator,
                       Vector<T>  &output)
      {
#ifdef DEAL_II_WITH_MPI
        if (job_supports_mpi())
          {
            if (values.begin() != output.begin())
              output.reinit (values.size());

            MPI_Allreduce ((values.begin() != output.begin()
                            ?
                            const_cast<void *>(static_cast<const void *>(values.begin()))
                            :
                            MPI_IN_PLACE),
                           output.begin(), values.size(), internal::mpi_type_id((T *)0), mpi_op,
                           mpi_communicator);
          }
        else
#endif
          {
            (void)mpi_op;
            (void)mpi_communicator;
            output = values;
          }
      }



    }


    template <typename T>
    inline
    T sum (const T &t,
           const MPI_Comm &mpi_communicator)
    {
      return internal::all_reduce(MPI_SUM, t, mpi_communicator);
    }


    template <typename T, unsigned int N>
    inline
    void sum (const T (&values)[N],
              const MPI_Comm &mpi_communicator,
              T (&sums)[N])
    {
      internal::all_reduce(MPI_SUM, values, mpi_communicator, sums);
    }


    template <typename T>
    inline
    void sum (const std::vector<T> &values,
              const MPI_Comm       &mpi_communicator,
              std::vector<T>       &sums)
    {
      internal::all_reduce(MPI_SUM, values, mpi_communicator, sums);
    }

    template <typename T>
    inline
    void sum (const Vector<T> &values,
              const MPI_Comm &mpi_communicator,
              Vector<T> &sums)
    {
      internal::all_reduce(MPI_SUM, values, mpi_communicator, sums);
    }


    template <int rank, int dim, typename Number>
    inline
    Tensor<rank,dim,Number>
    sum (const Tensor<rank,dim,Number> &local,
         const MPI_Comm &mpi_communicator)
    {
      const unsigned int n_entries = Tensor<rank,dim,Number>::n_independent_components;
      Number entries[ Tensor<rank,dim,Number>::n_independent_components ];

      for (unsigned int i=0; i< n_entries; ++i)
        entries[i] = local[ local.unrolled_to_component_indices(i) ];

      Number global_entries[ Tensor<rank,dim,Number>::n_independent_components ];
      dealii::Utilities::MPI::sum( entries, mpi_communicator, global_entries );

      Tensor<rank,dim,Number> global;
      for (unsigned int i=0; i< n_entries; ++i)
        global[ global.unrolled_to_component_indices(i) ] = global_entries[i];

      return global;
    }

    template <int rank, int dim, typename Number>
    inline
    SymmetricTensor<rank,dim,Number>
    sum (const SymmetricTensor<rank,dim,Number> &local,
         const MPI_Comm &mpi_communicator)
    {
      const unsigned int n_entries = SymmetricTensor<rank,dim,Number>::n_independent_components;
      Number entries[ SymmetricTensor<rank,dim,Number>::n_independent_components ];

      for (unsigned int i=0; i< n_entries; ++i)
        entries[i] = local[ local.unrolled_to_component_indices(i) ];

      Number global_entries[ SymmetricTensor<rank,dim,Number>::n_independent_components ];
      dealii::Utilities::MPI::sum( entries, mpi_communicator, global_entries );

      SymmetricTensor<rank,dim,Number> global;
      for (unsigned int i=0; i< n_entries; ++i)
        global[ global.unrolled_to_component_indices(i) ] = global_entries[i];

      return global;
    }

    template <typename T>
    inline
    T max (const T &t,
           const MPI_Comm &mpi_communicator)
    {
      return internal::all_reduce(MPI_MAX, t, mpi_communicator);
    }


    template <typename T, unsigned int N>
    inline
    void max (const T (&values)[N],
              const MPI_Comm &mpi_communicator,
              T (&maxima)[N])
    {
      internal::all_reduce(MPI_MAX, values, mpi_communicator, maxima);
    }


    template <typename T>
    inline
    void max (const std::vector<T> &values,
              const MPI_Comm       &mpi_communicator,
              std::vector<T>       &maxima)
    {
      internal::all_reduce(MPI_MAX, values, mpi_communicator, maxima);
    }


    template <typename T>
    inline
    T min (const T &t,
           const MPI_Comm &mpi_communicator)
    {
      return internal::all_reduce(MPI_MIN, t, mpi_communicator);
    }


    template <typename T, unsigned int N>
    inline
    void min (const T (&values)[N],
              const MPI_Comm &mpi_communicator,
              T (&minima)[N])
    {
      internal::all_reduce(MPI_MIN, values, mpi_communicator, minima);
    }


    template <typename T>
    inline
    void min (const std::vector<T> &values,
              const MPI_Comm       &mpi_communicator,
              std::vector<T>       &minima)
    {
      internal::all_reduce(MPI_MIN, values, mpi_communicator, minima);
    }


    inline
    bool job_supports_mpi ()
    {
#ifdef DEAL_II_WITH_MPI
      int MPI_has_been_started = 0;
      MPI_Initialized(&MPI_has_been_started);

      return (MPI_has_been_started > 0);
#else
      return false;
#endif
    }
  } // end of namespace MPI
} // end of namespace Utilities


DEAL_II_NAMESPACE_CLOSE

#endif