/usr/include/af/signal.h is in libarrayfire-dev 3.3.2+dfsg1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 | /*******************************************************
* Copyright (c) 2014, ArrayFire
* All rights reserved.
*
* This file is distributed under 3-clause BSD license.
* The complete license agreement can be obtained at:
* http://arrayfire.com/licenses/BSD-3-Clause
********************************************************/
#pragma once
#include <af/defines.h>
#ifdef __cplusplus
namespace af
{
class array;
class dim4;
/**
C++ Interface for data interpolation on one dimensional signals
\param[in] in is the input array
\param[in] pos array contains the interpolation locations
\param[in] method is the interpolation type, it can take one of the values defined by the
enum \ref af_interp_type
\param[in] offGrid is the value that will set in the output array when certain index is out of bounds
\return the array with interpolated values
\ingroup signal_func_approx1
*/
AFAPI array approx1(const array &in, const array &pos,
const interpType method = AF_INTERP_LINEAR, const float offGrid = 0.0f);
/**
C++ Interface for data interpolation on two dimensional signals
\param[in] in is the input array
\param[in] pos0 array contains the interpolation locations for first dimension
\param[in] pos1 array contains the interpolation locations for second dimension
\param[in] method is the interpolation type, it can take one of the values defined by the
enum \ref af_interp_type
\param[in] offGrid is the value that will set in the output array when certain index is out of bounds
\return the array with interpolated values
\ingroup signal_func_approx2
*/
AFAPI array approx2(const array &in, const array &pos0, const array &pos1,
const interpType method = AF_INTERP_LINEAR, const float offGrid = 0.0f);
/**
C++ Interface for fast fourier transform on one dimensional signals
\param[in] in is the input array
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\param[in] odim0 is the length of output signals - used to either truncate or pad the input signals
\return the transformed array
\ingroup signal_func_fft
*/
AFAPI array fftNorm(const array& in, const double norm_factor, const dim_t odim0=0);
/**
C++ Interface for fast fourier transform on two dimensional signals
\param[in] in is the input array
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\param[in] odim0 is the length of output signals along first dimension - used to either truncate/pad the input
\param[in] odim1 is the length of output signals along second dimension - used to either truncate/pad the input
\return the transformed array
\ingroup signal_func_fft2
*/
AFAPI array fft2Norm(const array& in, const double norm_factor, const dim_t odim0=0, const dim_t odim1=0);
/**
C++ Interface for fast fourier transform on three dimensional signals
\param[in] in is the input array and the output of 1D fourier transform on exit
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\param[in] odim0 is the length of output signals along first dimension - used to either truncate/pad the input
\param[in] odim1 is the length of output signals along second dimension - used to either truncate/pad the input
\param[in] odim2 is the length of output signals along third dimension - used to either truncate/pad the input
\return the transformed array
\ingroup signal_func_fft3
*/
AFAPI array fft3Norm(const array& in, const double norm_factor, const dim_t odim0=0, const dim_t odim1=0, const dim_t odim2=0);
#if AF_API_VERSION >= 31
/**
C++ Interface for fast fourier transform on one dimensional signals
\param[inout] in is the input array on entry and the output of 1D forward fourier transform on exit
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\note The input \p in must be complex
\ingroup signal_func_fft
*/
AFAPI void fftInPlace(array& in, const double norm_factor = 1);
#endif
#if AF_API_VERSION >= 31
/**
C++ Interface for fast fourier transform on two dimensional signals
\param[inout] in is the input array on entry and the output of 2D forward fourier transform on exit
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\return the transformed array
\note The input \p in must be complex
\ingroup signal_func_fft2
*/
AFAPI void fft2InPlace(array& in, const double norm_factor = 1);
#endif
#if AF_API_VERSION >= 31
/**
C++ Interface for fast fourier transform on three dimensional signals
\param[inout] in is the input array on entry and the output of 3D forward fourier transform on exit
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\return the transformed array
\note The input \p in must be complex
\ingroup signal_func_fft3
*/
AFAPI void fft3InPlace(array& in, const double norm_factor = 1);
#endif
/**
C++ Interface for fast fourier transform on one dimensional signals
This version of fft function uses a default norm_factor parameter that is calculated internally
based on the input signals.
\param[in] in is the input array
\param[in] odim0 is the length of output signals - used to either truncate or pad the input signals
\return the transformed array
\ingroup signal_func_fft
*/
AFAPI array fft(const array& in, const dim_t odim0=0);
/**
C++ Interface for fast fourier transform on two dimensional signals
This version of fft function uses a default norm_factor parameter that is calculated internally
based on the input signals.
\param[in] in is the input array
\param[in] odim0 is the length of output signals along first dimension - used to either truncate/pad the input
\param[in] odim1 is the length of output signals along second dimension - used to either truncate/pad the input
\return the transformed array
\ingroup signal_func_fft2
*/
AFAPI array fft2(const array& in, const dim_t odim0=0, const dim_t odim1=0);
/**
C++ Interface for fast fourier transform on three dimensional signals
This version of fft function uses a default norm_factor parameter that is calculated internally
based on the input signals.
\param[in] in is the input array
\param[in] odim0 is the length of output signals along first dimension - used to either truncate/pad the input
\param[in] odim1 is the length of output signals along second dimension - used to either truncate/pad the input
\param[in] odim2 is the length of output signals along third dimension - used to either truncate/pad the input
\return the transformed array
\ingroup signal_func_fft3
*/
AFAPI array fft3(const array& in, const dim_t odim0=0, const dim_t odim1=0, const dim_t odim2=0);
/**
C++ Interface for fast fourier transform on any(1d, 2d, 3d) dimensional signals
\param[in] in is the input array
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\param[in] outDims is an object of \ref dim4 that has the output array dimensions - used to either truncate or pad the input signals
\return the transformed array
\ingroup signal_func_fft
*/
AFAPI array dft(const array& in, const double norm_factor, const dim4 outDims);
/**
C++ Interface for fast fourier transform on any(1d, 2d, 3d) dimensional signals
This version of fft function uses a default norm_factor parameter that is calculated internally
based on the input signals.
\param[in] in is the input array
\param[in] outDims is an object of \ref dim4 that has the output array dimensions - used to either truncate or pad the input signals
\return the transformed array
\ingroup signal_func_fft
*/
AFAPI array dft(const array& in, const dim4 outDims);
/**
C++ Interface for fast fourier transform on any(1d, 2d, 3d) dimensional signals
This version of fft function uses a default norm_factor parameter that is calculated internally
based on the input signals.
\param[in] in is the input array
\return the transformed array
\ingroup signal_func_fft
*/
AFAPI array dft(const array& in);
/**
C++ Interface for inverse fast fourier transform on one dimensional signals
\param[in] in is the input array
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\param[in] odim0 is the length of output signals - used to either truncate or pad the input signals
\return the transformed array
\ingroup signal_func_ifft
*/
AFAPI array ifftNorm(const array& in, const double norm_factor, const dim_t odim0=0);
/**
C++ Interface for inverse fast fourier transform on two dimensional signals
\param[in] in is the input array
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\param[in] odim0 is the length of output signals along first dimension - used to either truncate/pad the input
\param[in] odim1 is the length of output signals along second dimension - used to either truncate/pad the input
\return the transformed array
\ingroup signal_func_ifft2
*/
AFAPI array ifft2Norm(const array& in, const double norm_factor, const dim_t odim0=0, const dim_t odim1=0);
/**
C++ Interface for inverse fast fourier transform on three dimensional signals
\param[in] in is the input array
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\param[in] odim0 is the length of output signals along first dimension - used to either truncate/pad the input
\param[in] odim1 is the length of output signals along second dimension - used to either truncate/pad the input
\param[in] odim2 is the length of output signals along third dimension - used to either truncate/pad the input
\return the transformed array
\ingroup signal_func_ifft3
*/
AFAPI array ifft3Norm(const array& in, const double norm_factor, const dim_t odim0=0, const dim_t odim1=0, const dim_t odim2=0);
#if AF_API_VERSION >= 31
/**
C++ Interface for fast fourier transform on one dimensional signals
\param[inout] in is the input array on entry and the output of 1D inverse fourier transform on exit
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\note The input \p in must be complex
\ingroup signal_func_ifft
*/
AFAPI void ifftInPlace(array& in, const double norm_factor = 1);
#endif
#if AF_API_VERSION >= 31
/**
C++ Interface for fast fourier transform on two dimensional signals
\param[inout] in is the input array on entry and the output of 2D inverse fourier transform on exit
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\return the transformed array
\note The input \p in must be complex
\ingroup signal_func_ifft2
*/
AFAPI void ifft2InPlace(array& in, const double norm_factor = 1);
#endif
#if AF_API_VERSION >= 31
/**
C++ Interface for fast fourier transform on three dimensional signals
\param[inout] in is the input array on entry and the output of 3D inverse fourier transform on exit
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\return the transformed array
\note The input \p in must be complex
\ingroup signal_func_ifft3
*/
AFAPI void ifft3InPlace(array& in, const double norm_factor = 1);
#endif
/**
C++ Interface for inverse fast fourier transform on one dimensional signals
This version of fft function uses a default norm_factor parameter that is calculated internally
based on the input signals.
\param[in] in is the input array
\param[in] odim0 is the length of output signals - used to either truncate or pad the input signals
\return the transformed array
\ingroup signal_func_ifft
*/
AFAPI array ifft(const array& in, const dim_t odim0=0);
/**
C++ Interface for inverse fast fourier transform on two dimensional signals
This version of fft function uses a default norm_factor parameter that is calculated internally
based on the input signals.
\param[in] in is the input array
\param[in] odim0 is the length of output signals along first dimension - used to either truncate/pad the input
\param[in] odim1 is the length of output signals along second dimension - used to either truncate/pad the input
\return the transformed array
\ingroup signal_func_ifft2
*/
AFAPI array ifft2(const array& in, const dim_t odim0=0, const dim_t odim1=0);
/**
C++ Interface for inverse fast fourier transform on three dimensional signals
This version of fft function uses a default norm_factor parameter that is calculated internally
based on the input signals.
\param[in] in is the input array
\param[in] odim0 is the length of output signals along first dimension - used to either truncate/pad the input
\param[in] odim1 is the length of output signals along second dimension - used to either truncate/pad the input
\param[in] odim2 is the length of output signals along third dimension - used to either truncate/pad the input
\return the transformed array
\ingroup signal_func_ifft3
*/
AFAPI array ifft3(const array& in, const dim_t odim0=0, const dim_t odim1=0, const dim_t odim2=0);
/**
C++ Interface for inverse fast fourier transform on any(1d, 2d, 3d) dimensional signals
\param[in] in is the input array
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\param[in] outDims is an object of \ref dim4 that has the output array dimensions - used to either truncate or pad the input signals
\return the transformed array
\ingroup signal_func_fft
*/
AFAPI array idft(const array& in, const double norm_factor, const dim4 outDims);
/**
C++ Interface for inverse fast fourier transform on any(1d, 2d, 3d) dimensional signals
This version of fft function uses a default norm_factor parameter that is calculated internally
based on the input signals.
\param[in] in is the input array
\param[in] outDims is an object of \ref dim4 that has the output array dimensions - used to either truncate or pad the input signals
\return the transformed array
\ingroup signal_func_fft
*/
AFAPI array idft(const array& in, const dim4 outDims);
/**
C++ Interface for inverse fast fourier transform on any(1d, 2d, 3d) dimensional signals
This version of fft function uses a default norm_factor parameter that is calculated internally
based on the input signals.
\param[in] in is the input array
\return the transformed array
\ingroup signal_func_fft
*/
AFAPI array idft(const array& in);
#if AF_API_VERSION >= 31
/**
C++ Interface for real to complex fast fourier transform for one dimensional signals
\param[in] in is a real array
\param[in] dims is the requested padded dimensions before the transform is applied
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\return a complex array containing the non redundant parts of \p in along the first dimension.
\note The first dimension of the output will be of size (dims[0] / 2) + 1. The remaining dimensions are unchanged.
\ingroup signal_func_fft_r2c
*/
template<int rank>
array fftR2C(const array &in,
const dim4& dims,
const double norm_factor = 0);
#endif
#if AF_API_VERSION >= 31
/**
C++ Interface for real to complex fast fourier transform for one dimensional signals
\param[in] in is a real array
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\return a complex array containing the non redundant parts of \p in along the first dimension.
\note The first dimension of the output will be of size (in.dims(0) / 2) + 1. The remaining dimensions are unchanged.
\ingroup signal_func_fft_r2c
*/
template<int rank>
array fftR2C(const array &in,
const double norm_factor = 0);
#endif
#if AF_API_VERSION >= 31
/**
C++ Interface for complex to real fast fourier transform
\param[in] in is a complex array containing only the non redundant parts of the signals
\param[in] is_odd is a flag signifying if the output should be even or odd size
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\tparam rank signifies the dimensionality of the transform
\return A real array of size [2 * idim0 - 2 + is_odd, idim1, idim2, idim3] where idim{0,1,2,3} signify input dimensions
\ingroup signal_func_fft_c2r
*/
template<int rank>
array fftC2R(const array &in, bool is_odd = false,
const double norm_factor = 0);
#endif
/**
C++ Interface for convolution any(one through three) dimensional signals
Example for convolution on one dimensional signal in one to one batch mode
\snippet test/convolve.cpp ex_image_convolve_1d
Example for convolution on two dimensional signal in one to one batch mode
\snippet test/convolve.cpp ex_image_convolve_2d
Example for convolution on three dimensional signal in one to one batch mode
\snippet test/convolve.cpp ex_image_convolve_3d
\param[in] signal is the input signal
\param[in] filter is the signal that shall be flipped for the convolution operation
\param[in] mode indicates if the convolution should be expanded or not(where output size equals input)
\param[in] domain specifies if the convolution should be performed in frequency os spatial domain
\return the convolved array
\note The default parameter of \p domain, \ref AF_CONV_AUTO, heuristically switches between frequency and spatial domain.
\ingroup signal_func_convolve
*/
AFAPI array convolve(const array& signal, const array& filter, const convMode mode=AF_CONV_DEFAULT, const convDomain domain=AF_CONV_AUTO);
/**
C++ Interface for separable convolution on two dimensional signals
\snippet test/convolve.cpp ex_image_conv2_sep
\param[in] signal is the input signal
\param[in] col_filter is the signal that shall be along coloumns
\param[in] row_filter is the signal that shall be along rows
\param[in] mode indicates if the convolution should be expanded or not(where output size equals input)
\return the convolved array
\note The default parameter of \p domain, \ref AF_CONV_AUTO, heuristically switches between frequency and spatial domain.
\note Separable convolution only supports two(ONE-to-ONE and MANY-to-ONE) batch modes from the ones described in the detailed description section.
\ingroup signal_func_convolve
*/
AFAPI array convolve(const array& col_filter, const array& row_filter, const array& signal, const convMode mode=AF_CONV_DEFAULT);
/**
C++ Interface for convolution on one dimensional signals
\snippet test/convolve.cpp ex_image_convolve1
\param[in] signal is the input signal
\param[in] filter is the signal that shall be flipped for the convolution operation
\param[in] mode indicates if the convolution should be expanded or not(where output size equals input)
\param[in] domain specifies if the convolution should be performed in frequency os spatial domain
\return the convolved array
\note The default parameter of \p domain, \ref AF_CONV_AUTO, heuristically switches between frequency and spatial domain.
\ingroup signal_func_convolve1
*/
AFAPI array convolve1(const array& signal, const array& filter, const convMode mode=AF_CONV_DEFAULT, const convDomain domain=AF_CONV_AUTO);
/**
C++ Interface for convolution on two dimensional signals
\snippet test/convolve.cpp ex_image_convolve2
\param[in] signal is the input signal
\param[in] filter is the signal that shall be flipped for the convolution operation
\param[in] mode indicates if the convolution should be expanded or not(where output size equals input)
\param[in] domain specifies if the convolution should be performed in frequency os spatial domain
\return the convolved array
\note The default parameter of \p domain, \ref AF_CONV_AUTO, heuristically switches between frequency and spatial domain.
\ingroup signal_func_convolve2
*/
AFAPI array convolve2(const array& signal, const array& filter, const convMode mode=AF_CONV_DEFAULT, const convDomain domain=AF_CONV_AUTO);
/**
C++ Interface for convolution on three dimensional signals
\snippet test/convolve.cpp ex_image_convolve3
\param[in] signal is the input signal
\param[in] filter is the signal that shall be flipped for the convolution operation
\param[in] mode indicates if the convolution should be expanded or not(where output size equals input)
\param[in] domain specifies if the convolution should be performed in frequency os spatial domain
\return the convolved array
\note The default parameter of \p domain, \ref AF_CONV_AUTO, heuristically switches between frequency and spatial domain.
\ingroup signal_func_convolve3
*/
AFAPI array convolve3(const array& signal, const array& filter, const convMode mode=AF_CONV_DEFAULT, const convDomain domain=AF_CONV_AUTO);
/**
C++ Interface for FFT-based convolution any(one through three) dimensional signals
\param[in] signal is the input signal
\param[in] filter is the signal that shall be used for the convolution operation
\param[in] mode indicates if the convolution should be expanded or not(where output size equals input)
\return the convolved array
\ingroup signal_func_fft_convolve
*/
AFAPI array fftConvolve(const array& signal, const array& filter, const convMode mode=AF_CONV_DEFAULT);
/**
C++ Interface for convolution on one dimensional signals
\param[in] signal is the input signal
\param[in] filter is the signal that shall be used for the convolution operation
\param[in] mode indicates if the convolution should be expanded or not(where output size equals input)
\return the convolved array
\ingroup signal_func_fft_convolve1
*/
AFAPI array fftConvolve1(const array& signal, const array& filter, const convMode mode=AF_CONV_DEFAULT);
/**
C++ Interface for convolution on two dimensional signals
\param[in] signal is the input signal
\param[in] filter is the signal that shall be used for the convolution operation
\param[in] mode indicates if the convolution should be expanded or not(where output size equals input)
\return the convolved array
\ingroup signal_func_fft_convolve2
*/
AFAPI array fftConvolve2(const array& signal, const array& filter, const convMode mode=AF_CONV_DEFAULT);
/**
C++ Interface for convolution on three dimensional signals
\param[in] signal is the input signal
\param[in] filter is the signal that shall be used for the convolution operation
\param[in] mode indicates if the convolution should be expanded or not(where output size equals input)
\return the convolved array
\ingroup signal_func_fftconvolve3
*/
AFAPI array fftConvolve3(const array& signal, const array& filter, const convMode mode=AF_CONV_DEFAULT);
/**
C++ Interface for finite impulse response filter
\param[in] b is the array containing the coefficients of the filter
\param[in] x is the input signal to the filter
\returns the output signal from the filter
\ingroup signal_func_fir
*/
AFAPI array fir(const array &b, const array &x);
/**
C++ Interface for infinite impulse response filter
\param[in] b is the array containing the feedforward coefficients
\param[in] a is the array containing the feedback coefficients
\param[in] x is the input signal to the filter
\returns the output signal from the filter
\note The feedforward coefficients are currently limited to a length of 512
\ingroup signal_func_iir
*/
AFAPI array iir(const array &b, const array &a, const array &x);
}
#endif
#ifdef __cplusplus
extern "C" {
#endif
/**
C Interface for signals interpolation on one dimensional signals
\param[out] out is the array with interpolated values
\param[in] in is the input array
\param[in] pos array contains the interpolation locations
\param[in] method is the interpolation type, it can take one of the values defined by the
enum \ref af_interp_type
\param[in] offGrid is the value that will set in the output array when certain index is out of bounds
\return \ref AF_SUCCESS if the interpolation operation is successful,
otherwise an appropriate error code is returned.
\ingroup signal_func_approx1
*/
AFAPI af_err af_approx1(af_array *out, const af_array in, const af_array pos,
const af_interp_type method, const float offGrid);
/**
C Interface for signals interpolation on two dimensional signals
\param[out] out is the array with interpolated values
\param[in] in is the input array
\param[in] pos0 array contains the interpolation locations for first dimension
\param[in] pos1 array contains the interpolation locations for second dimension
\param[in] method is the interpolation type, it can take one of the values defined by the
enum \ref af_interp_type
\param[in] offGrid is the value that will set in the output array when certain index is out of bounds
\return \ref AF_SUCCESS if the interpolation operation is successful,
otherwise an appropriate error code is returned.
\ingroup signal_func_approx2
*/
AFAPI af_err af_approx2(af_array *out, const af_array in, const af_array pos0, const af_array pos1,
const af_interp_type method, const float offGrid);
/**
C Interface for fast fourier transform on one dimensional signals
\param[out] out is the transformed array
\param[in] in is the input array
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\param[in] odim0 is the length of output signals - used to either truncate or pad the input signals
\return \ref AF_SUCCESS if the fft transform is successful,
otherwise an appropriate error code is returned.
\ingroup signal_func_fft
*/
AFAPI af_err af_fft(af_array *out, const af_array in, const double norm_factor, const dim_t odim0);
#if AF_API_VERSION >= 31
/**
C Interface for fast fourier transform on one dimensional signals
\param[inout] in is the input array on entry and the output of 1D forward fourier transform at exit
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\return \ref AF_SUCCESS if the fft transform is successful,
otherwise an appropriate error code is returned.
\note The input \p in must be a complex array
\ingroup signal_func_fft
*/
AFAPI af_err af_fft_inplace(af_array in, const double norm_factor);
#endif
/**
C Interface for fast fourier transform on two dimensional signals
\param[out] out is the transformed array
\param[in] in is the input array
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\param[in] odim0 is the length of output signals along first dimension - used to either truncate/pad the input
\param[in] odim1 is the length of output signals along second dimension - used to either truncate/pad the input
\return \ref AF_SUCCESS if the fft transform is successful,
otherwise an appropriate error code is returned.
\ingroup signal_func_fft2
*/
AFAPI af_err af_fft2(af_array *out, const af_array in, const double norm_factor, const dim_t odim0, const dim_t odim1);
#if AF_API_VERSION >= 31
/**
C Interface for fast fourier transform on two dimensional signals
\param[inout] in is the input array on entry and the output of 2D forward fourier transform on exit
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\return \ref AF_SUCCESS if the fft transform is successful,
otherwise an appropriate error code is returned.
\note The input \p in must be a complex array
\ingroup signal_func_fft2
*/
AFAPI af_err af_fft2_inplace(af_array in, const double norm_factor);
#endif
/**
C Interface for fast fourier transform on three dimensional signals
\param[out] out is the transformed array
\param[in] in is the input array
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\param[in] odim0 is the length of output signals along first dimension - used to either truncate/pad the input
\param[in] odim1 is the length of output signals along second dimension - used to either truncate/pad the input
\param[in] odim2 is the length of output signals along third dimension - used to either truncate/pad the input
\return \ref AF_SUCCESS if the fft transform is successful,
otherwise an appropriate error code is returned.
\ingroup signal_func_fft3
*/
AFAPI af_err af_fft3(af_array *out, const af_array in, const double norm_factor, const dim_t odim0, const dim_t odim1, const dim_t odim2);
#if AF_API_VERSION >= 31
/**
C Interface for fast fourier transform on three dimensional signals
\param[inout] in is the input array on entry and the output of 3D forward fourier transform on exit
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\return \ref AF_SUCCESS if the fft transform is successful,
otherwise an appropriate error code is returned.
\note The input \p must be a complex array
\ingroup signal_func_fft3
*/
AFAPI af_err af_fft3_inplace(af_array in, const double norm_factor);
#endif
/**
C Interface for inverse fast fourier transform on one dimensional signals
\param[out] out is the transformed array
\param[in] in is the input array
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\param[in] odim0 is the length of output signals - used to either truncate or pad the input signals
\return \ref AF_SUCCESS if the fft transform is successful,
otherwise an appropriate error code is returned.
\ingroup signal_func_ifft
*/
AFAPI af_err af_ifft(af_array *out, const af_array in, const double norm_factor, const dim_t odim0);
#if AF_API_VERSION >= 31
/**
C Interface for fast fourier transform on one dimensional signals
\param[inout] in is the input array on entry and the output of 1D inverse fourier transform at exit
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\return \ref AF_SUCCESS if the ifft transform is successful,
otherwise an appropriate error code is returned.
\note The input \p in must be a complex array
\ingroup signal_func_ifft
*/
AFAPI af_err af_ifft_inplace(af_array in, const double norm_factor);
#endif
/**
C Interface for inverse fast fourier transform on two dimensional signals
\param[out] out is the transformed array
\param[in] in is the input array
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\param[in] odim0 is the length of output signals along first dimension - used to either truncate/pad the input
\param[in] odim1 is the length of output signals along second dimension - used to either truncate/pad the input
\return \ref AF_SUCCESS if the fft transform is successful,
otherwise an appropriate error code is returned.
\ingroup signal_func_ifft2
*/
AFAPI af_err af_ifft2(af_array *out, const af_array in, const double norm_factor, const dim_t odim0, const dim_t odim1);
#if AF_API_VERSION >= 31
/**
C Interface for fast fourier transform on two dimensional signals
\param[inout] in is the input array on entry and the output of 2D inverse fourier transform on exit
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\return \ref AF_SUCCESS if the ifft transform is successful,
otherwise an appropriate error code is returned.
\note The input \p in must be a complex array
\ingroup signal_func_ifft2
*/
AFAPI af_err af_ifft2_inplace(af_array in, const double norm_factor);
#endif
/**
C Interface for inverse fast fourier transform on three dimensional signals
\param[out] out is the transformed array
\param[in] in is the input array
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\param[in] odim0 is the length of output signals along first dimension - used to either truncate/pad the input
\param[in] odim1 is the length of output signals along second dimension - used to either truncate/pad the input
\param[in] odim2 is the length of output signals along third dimension - used to either truncate/pad the input
\return \ref AF_SUCCESS if the fft transform is successful,
otherwise an appropriate error code is returned.
\ingroup signal_func_ifft3
*/
AFAPI af_err af_ifft3(af_array *out, const af_array in, const double norm_factor, const dim_t odim0, const dim_t odim1, const dim_t odim2);
#if AF_API_VERSION >= 31
/**
C Interface for fast fourier transform on three dimensional signals
\param[inout] in is the input array on entry and the output of 3D inverse fourier transform on exit
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\return \ref AF_SUCCESS if the ifft transform is successful,
otherwise an appropriate error code is returned.
\note The input \p must be a complex array
\ingroup signal_func_ifft3
*/
AFAPI af_err af_ifft3_inplace(af_array in, const double norm_factor);
#endif
#if AF_API_VERSION >= 31
/**
C Interface for real to complex fast fourier transform for one dimensional signals
\param[out] out is a complex array containing the non redundant parts of \p in.
\param[in] in is a real array
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\param[in] pad0 is the length of output signals along first dimension - used to either truncate/pad the input
\return \ref AF_SUCCESS if the fft transform is successful,
otherwise an appropriate error code is returned.
\note The first dimension of the output will be of size (pad0 / 2) + 1. The remaining dimensions are unchanged.
\ingroup signal_func_fft_r2c
*/
AFAPI af_err af_fft_r2c (af_array *out, const af_array in, const double norm_factor, const dim_t pad0);
#endif
#if AF_API_VERSION >= 31
/**
C Interface for real to complex fast fourier transform for two dimensional signals
\param[out] out is a complex array containing the non redundant parts of \p in.
\param[in] in is a real array
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\param[in] pad0 is the length of output signals along first dimension - used to either truncate/pad the input
\param[in] pad1 is the length of output signals along second dimension - used to either truncate/pad the input
\return \ref AF_SUCCESS if the fft transform is successful,
otherwise an appropriate error code is returned.
\note The first dimension of the output will be of size (pad0 / 2) + 1. The second dimension of the output will be pad1. The remaining dimensions are unchanged.
\ingroup signal_func_fft_r2c
*/
AFAPI af_err af_fft2_r2c(af_array *out, const af_array in, const double norm_factor, const dim_t pad0, const dim_t pad1);
#endif
#if AF_API_VERSION >= 31
/**
C Interface for real to complex fast fourier transform for three dimensional signals
\param[out] out is a complex array containing the non redundant parts of \p in.
\param[in] in is a real array
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\param[in] pad0 is the length of output signals along first dimension - used to either truncate/pad the input
\param[in] pad1 is the length of output signals along second dimension - used to either truncate/pad the input
\param[in] pad2 is the length of output signals along third dimension - used to either truncate/pad the input
\return \ref AF_SUCCESS if the fft transform is successful,
otherwise an appropriate error code is returned.
\note The first dimension of the output will be of size (pad0 / 2) + 1. The second dimension of the output will be pad1. The third dimension of the output will be pad 2.
\ingroup signal_func_fft_r2c
*/
AFAPI af_err af_fft3_r2c(af_array *out, const af_array in, const double norm_factor, const dim_t pad0, const dim_t pad1, const dim_t pad2);
#endif
#if AF_API_VERSION >= 31
/**
C Interface for complex to real fast fourier transform for one dimensional signals
\param[out] out is a real array containing the output of the transform.
\param[in] in is a complex array containing only the non redundant parts of the signals.
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\param[in] is_odd is a flag signifying if the output should be even or odd size
\return \ref AF_SUCCESS if the fft transform is successful,
otherwise an appropriate error code is returned.
\note The first dimension of the output will be 2 * dim0 - 1 if is_odd is true else 2 * dim0 - 2 where dim0 is the first dimension of the input. The remaining dimensions are unchanged.
\ingroup signal_func_fft_c2r
*/
AFAPI af_err af_fft_c2r (af_array *out, const af_array in, const double norm_factor, const bool is_odd);
#endif
#if AF_API_VERSION >= 31
/**
C Interface for complex to real fast fourier transform for two dimensional signals
\param[out] out is a real array containing the output of the transform.
\param[in] in is a complex array containing only the non redundant parts of the signals.
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\param[in] is_odd is a flag signifying if the output should be even or odd size
\return \ref AF_SUCCESS if the fft transform is successful,
otherwise an appropriate error code is returned.
\note The first dimension of the output will be 2 * dim0 - 1 if is_odd is true else 2 * dim0 - 2 where dim0 is the first dimension of the input. The remaining dimensions are unchanged.
\ingroup signal_func_fft_c2r
*/
AFAPI af_err af_fft2_c2r(af_array *out, const af_array in, const double norm_factor, const bool is_odd);
#endif
#if AF_API_VERSION >= 31
/**
C Interface for complex to real fast fourier transform for three dimensional signals
\param[out] out is a real array containing the output of the transform.
\param[in] in is a complex array containing only the non redundant parts of the signals.
\param[in] norm_factor is the normalization factor with which the input is scaled before the transformation is applied
\param[in] is_odd is a flag signifying if the output should be even or odd size
\return \ref AF_SUCCESS if the fft transform is successful,
otherwise an appropriate error code is returned.
\note The first dimension of the output will be 2 * dim0 - 1 if is_odd is true else 2 * dim0 - 2 where dim0 is the first dimension of the input. The remaining dimensions are unchanged.
\ingroup signal_func_fft_c2r
*/
AFAPI af_err af_fft3_c2r(af_array *out, const af_array in, const double norm_factor, const bool is_odd);
#endif
/**
C Interface for convolution on one dimensional signals
\param[out] out is convolved array
\param[in] signal is the input signal
\param[in] filter is the signal that shall be flipped for the convolution operation
\param[in] mode indicates if the convolution should be expanded or not(where output size equals input)
\param[in] domain specifies if the convolution should be performed in frequency os spatial domain
\return \ref AF_SUCCESS if the convolution is successful,
otherwise an appropriate error code is returned.
\note The default parameter of \p domain, \ref AF_CONV_AUTO, heuristically switches between frequency and spatial domain.
\ingroup signal_func_convolve1
*/
AFAPI af_err af_convolve1(af_array *out, const af_array signal, const af_array filter, const af_conv_mode mode, af_conv_domain domain);
/**
C Interface for convolution on two dimensional signals
\param[out] out is convolved array
\param[in] signal is the input signal
\param[in] filter is the signal that shall be flipped for the convolution operation
\param[in] mode indicates if the convolution should be expanded or not(where output size equals input)
\param[in] domain specifies if the convolution should be performed in frequency os spatial domain
\return \ref AF_SUCCESS if the convolution is successful,
otherwise an appropriate error code is returned.
\note The default parameter of \p domain, \ref AF_CONV_AUTO, heuristically switches between frequency and spatial domain.
\ingroup signal_func_convolve2
*/
AFAPI af_err af_convolve2(af_array *out, const af_array signal, const af_array filter, const af_conv_mode mode, af_conv_domain domain);
/**
C Interface for convolution on three dimensional signals
\param[out] out is convolved array
\param[in] signal is the input signal
\param[in] filter is the signal that shall be flipped for the convolution operation
\param[in] mode indicates if the convolution should be expanded or not(where output size equals input)
\param[in] domain specifies if the convolution should be performed in frequency os spatial domain
\return \ref AF_SUCCESS if the convolution is successful,
otherwise an appropriate error code is returned.
\note The default parameter of \p domain, \ref AF_CONV_AUTO, heuristically switches between frequency and spatial domain.
\ingroup signal_func_convolve3
*/
AFAPI af_err af_convolve3(af_array *out, const af_array signal, const af_array filter, const af_conv_mode mode, af_conv_domain domain);
/**
C Interface for separable convolution on two dimensional signals
\param[out] out is convolved array
\param[in] col_filter is filter that has to be applied along the coloumns
\param[in] row_filter is filter that has to be applied along the rows
\param[in] signal is the input array
\param[in] mode indicates if the convolution should be expanded or not(where output size equals input)
\return \ref AF_SUCCESS if the convolution is successful,
otherwise an appropriate error code is returned.
\note Separable convolution only supports two(ONE-to-ONE and MANY-to-ONE) batch modes from the ones described
in the detailed description section.
\ingroup signal_func_convolve
*/
AFAPI af_err af_convolve2_sep(af_array *out, const af_array col_filter, const af_array row_filter, const af_array signal, const af_conv_mode mode);
/**
C Interface for FFT-based convolution on one dimensional signals
\param[out] out is convolved array
\param[in] signal is the input signal
\param[in] filter is the signal that shall be used for the convolution operation
\param[in] mode indicates if the convolution should be expanded or not(where output size equals input)
\return \ref AF_SUCCESS if the convolution is successful,
otherwise an appropriate error code is returned.
\ingroup signal_func_fft_convolve1
*/
AFAPI af_err af_fft_convolve1(af_array *out, const af_array signal, const af_array filter, const af_conv_mode mode);
/**
C Interface for FFT-based convolution on two dimensional signals
\param[out] out is convolved array
\param[in] signal is the input signal
\param[in] filter is the signal that shall be used for the convolution operation
\param[in] mode indicates if the convolution should be expanded or not(where output size equals input)
\return \ref AF_SUCCESS if the convolution is successful,
otherwise an appropriate error code is returned.
\ingroup signal_func_fft_convolve2
*/
AFAPI af_err af_fft_convolve2(af_array *out, const af_array signal, const af_array filter, const af_conv_mode mode);
/**
C Interface for FFT-based convolution on three dimensional signals
\param[out] out is convolved array
\param[in] signal is the input signal
\param[in] filter is the signal that shall be used for the convolution operation
\param[in] mode indicates if the convolution should be expanded or not(where output size equals input)
\return \ref AF_SUCCESS if the convolution is successful,
otherwise an appropriate error code is returned.
\ingroup signal_func_fft_convolve3
*/
AFAPI af_err af_fft_convolve3(af_array *out, const af_array signal, const af_array filter, const af_conv_mode mode);
/**
C++ Interface for finite impulse response filter
\param[out] y is the output signal from the filter
\param[in] b is the array containing the coefficients of the filter
\param[in] x is the input signal to the filter
\ingroup signal_func_fir
*/
AFAPI af_err af_fir(af_array *y, const af_array b, const af_array x);
/**
C++ Interface for infinite impulse response filter
\param[out] y is the output signal from the filter
\param[in] b is the array containing the feedforward coefficients
\param[in] a is the array containing the feedback coefficients
\param[in] x is the input signal to the filter
\note The feedforward coefficients are currently limited to a length of 512
\ingroup signal_func_iir
*/
AFAPI af_err af_iir(af_array *y, const af_array b, const af_array a, const af_array x);
#ifdef __cplusplus
}
#endif
|