This file is indexed.

/usr/include/coin/OsiCbcSolverInterface.hpp is in coinor-libcbc-dev 2.8.12-1+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
// $Id: OsiCbcSolverInterface.hpp 1902 2013-04-10 16:58:16Z stefan $
// Copyright (C) 2000, International Business Machines
// Corporation and others.  All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).

#ifndef OsiCbcSolverInterface_H
#define OsiCbcSolverInterface_H

#include <string>
#include <cfloat>
#include <map>
#include "CbcModel.hpp"
#include "CoinPackedMatrix.hpp"
#include "OsiSolverInterface.hpp"
#include "CbcStrategy.hpp"
#include "CoinWarmStartBasis.hpp"

class OsiRowCut;
class OsiClpSolverInterface;
static const double OsiCbcInfinity = COIN_DBL_MAX;

//#############################################################################

/** Cbc Solver Interface
    
Instantiation of OsiCbcSolverInterface for the Model Algorithm.

*/

class OsiCbcSolverInterface :
  virtual public OsiSolverInterface {
  friend void OsiCbcSolverInterfaceUnitTest(const std::string & mpsDir, const std::string & netlibDir);
  
public:
  //---------------------------------------------------------------------------
  /**@name Solve methods */
  //@{
  /// Solve initial LP relaxation 
  virtual void initialSolve();
  
  /// Resolve an LP relaxation after problem modification
  virtual void resolve();
  
  /// Invoke solver's built-in enumeration algorithm
  virtual void branchAndBound();
  //@}
  
  //---------------------------------------------------------------------------
  /**@name Parameter set/get methods
     
  The set methods return true if the parameter was set to the given value,
  false otherwise. There can be various reasons for failure: the given
  parameter is not applicable for the solver (e.g., refactorization
  frequency for the cbc algorithm), the parameter is not yet implemented
  for the solver or simply the value of the parameter is out of the range
  the solver accepts. If a parameter setting call returns false check the
  details of your solver.
  
  The get methods return true if the given parameter is applicable for the
  solver and is implemented. In this case the value of the parameter is
  returned in the second argument. Otherwise they return false.
  */
  //@{
  // Set an integer parameter
  bool setIntParam(OsiIntParam key, int value);
  // Set an double parameter
  bool setDblParam(OsiDblParam key, double value);
  // Set a string parameter
  bool setStrParam(OsiStrParam key, const std::string & value);
  // Get an integer parameter
  bool getIntParam(OsiIntParam key, int& value) const;
  // Get an double parameter
  bool getDblParam(OsiDblParam key, double& value) const;
  // Get a string parameter
  bool getStrParam(OsiStrParam key, std::string& value) const;
  // Set a hint parameter - overrides OsiSolverInterface
  virtual bool setHintParam(OsiHintParam key, bool yesNo=true,
                            OsiHintStrength strength=OsiHintTry,
                            void * otherInformation=NULL);
  /// Get a hint parameter
    virtual bool getHintParam(OsiHintParam key, bool& yesNo,
			      OsiHintStrength& strength,
			      void *& otherInformation) const;

  using OsiSolverInterface::getHintParam ;
  /// Get a hint parameter
    virtual bool getHintParam(OsiHintParam key, bool& yesNo,
			      OsiHintStrength& strength) const;
  //@}
  
  //---------------------------------------------------------------------------
  ///@name Methods returning info on how the solution process terminated
  //@{
  /// Are there a numerical difficulties?
  virtual bool isAbandoned() const;
  /// Is optimality proven?
  virtual bool isProvenOptimal() const;
  /// Is primal infeasiblity proven?
  virtual bool isProvenPrimalInfeasible() const;
  /// Is dual infeasiblity proven?
  virtual bool isProvenDualInfeasible() const;
  /// Is the given primal objective limit reached?
  virtual bool isPrimalObjectiveLimitReached() const;
  /// Is the given dual objective limit reached?
  virtual bool isDualObjectiveLimitReached() const;
  /// Iteration limit reached?
  virtual bool isIterationLimitReached() const;
  //@}
  
  //---------------------------------------------------------------------------
  /**@name WarmStart related methods */
  //@{
  
  /*! \brief Get an empty warm start object
    
  This routine returns an empty CoinWarmStartBasis object. Its purpose is
  to provide a way to give a client a warm start basis object of the
  appropriate type, which can resized and modified as desired.
  */
  
  virtual CoinWarmStart *getEmptyWarmStart () const;
  
  /// Get warmstarting information
  virtual CoinWarmStart* getWarmStart() const;
  /** Set warmstarting information. Return true/false depending on whether
      the warmstart information was accepted or not. */
  virtual bool setWarmStart(const CoinWarmStart* warmstart);
  //@}
  
  //---------------------------------------------------------------------------
  /**@name Hotstart related methods (primarily used in strong branching). <br>
     The user can create a hotstart (a snapshot) of the optimization process
     then reoptimize over and over again always starting from there.<br>
     <strong>NOTE</strong>: between hotstarted optimizations only
     bound changes are allowed. */
  //@{
  /// Create a hotstart point of the optimization process
  virtual void markHotStart();
  /// Optimize starting from the hotstart
  virtual void solveFromHotStart();
  /// Delete the snapshot
  virtual void unmarkHotStart();
  //@}
  
  //---------------------------------------------------------------------------
  /**@name Problem information methods
     
  These methods call the solver's query routines to return
  information about the problem referred to by the current object.
  Querying a problem that has no data associated with it result in
  zeros for the number of rows and columns, and NULL pointers from
  the methods that return vectors.
  
  Const pointers returned from any data-query method are valid as
  long as the data is unchanged and the solver is not called.
  */
  //@{
  /**@name Methods related to querying the input data */
  //@{
  /// Get number of columns
  virtual int getNumCols() const;
  
  /// Get number of rows
  virtual int getNumRows() const;
  
  /// Get number of nonzero elements
  virtual int getNumElements() const ;
  
  /// Get pointer to array[getNumCols()] of column lower bounds
  virtual const double * getColLower() const;
  
  /// Get pointer to array[getNumCols()] of column upper bounds
  virtual const double * getColUpper() const;
  
  /** Get pointer to array[getNumRows()] of row constraint senses.
      <ul>
      <li>'L' <= constraint
      <li>'E' =  constraint
      <li>'G' >= constraint
      <li>'R' ranged constraint
      <li>'N' free constraint
      </ul>
  */
  virtual const char * getRowSense() const;
  
  /** Get pointer to array[getNumRows()] of rows right-hand sides
      <ul>
      <li> if rowsense()[i] == 'L' then rhs()[i] == rowupper()[i]
      <li> if rowsense()[i] == 'G' then rhs()[i] == rowlower()[i]
      <li> if rowsense()[i] == 'R' then rhs()[i] == rowupper()[i]
      <li> if rowsense()[i] == 'N' then rhs()[i] == 0.0
      </ul>
  */
  virtual const double * getRightHandSide() const ;
  
  /** Get pointer to array[getNumRows()] of row ranges.
      <ul>
      <li> if rowsense()[i] == 'R' then
      rowrange()[i] == rowupper()[i] - rowlower()[i]
      <li> if rowsense()[i] != 'R' then
      rowrange()[i] is undefined
      </ul>
  */
  virtual const double * getRowRange() const ;
  
  /// Get pointer to array[getNumRows()] of row lower bounds
  virtual const double * getRowLower() const ;
  
  /// Get pointer to array[getNumRows()] of row upper bounds
  virtual const double * getRowUpper() const ;
  
  /// Get pointer to array[getNumCols()] of objective function coefficients
  virtual const double * getObjCoefficients() const; 
  
  /// Get objective function sense (1 for min (default), -1 for max)
  virtual double getObjSense() const ;
  
  /// Return true if column is continuous
  virtual bool isContinuous(int colNumber) const;
  
  
  /// Get pointer to row-wise copy of matrix
  virtual const CoinPackedMatrix * getMatrixByRow() const;
  
  /// Get pointer to column-wise copy of matrix
  virtual const CoinPackedMatrix * getMatrixByCol() const;
  
  /// Get solver's value for infinity
  virtual double getInfinity() const;
  //@}
  
  /**@name Methods related to querying the solution */
  //@{
  /// Get pointer to array[getNumCols()] of primal solution vector
  virtual const double * getColSolution() const; 
  
  /// Get pointer to array[getNumRows()] of dual prices
  virtual const double * getRowPrice() const;
  
  /// Get a pointer to array[getNumCols()] of reduced costs
  virtual const double * getReducedCost() const; 
  
  /** Get pointer to array[getNumRows()] of row activity levels (constraint
      matrix times the solution vector */
  virtual const double * getRowActivity() const; 
  
  /// Get objective function value
  virtual double getObjValue() const;
  
  /** Get how many iterations it took to solve the problem (whatever
      "iteration" mean to the solver. */
  virtual int getIterationCount() const ;
  
  /** Get as many dual rays as the solver can provide. (In case of proven
      primal infeasibility there should be at least one.)

      The first getNumRows() ray components will always be associated with
      the row duals (as returned by getRowPrice()). If \c fullRay is true,
      the final getNumCols() entries will correspond to the ray components
      associated with the nonbasic variables. If the full ray is requested
      and the method cannot provide it, it will throw an exception.

      <strong>NOTE for implementers of solver interfaces:</strong> <br>
      The double pointers in the vector should point to arrays of length
      getNumRows() and they should be allocated via new[]. <br>
      
      <strong>NOTE for users of solver interfaces:</strong> <br>
      It is the user's responsibility to free the double pointers in the
      vector using delete[].
  */
  virtual std::vector<double*> getDualRays(int maxNumRays,
					   bool fullRay = false) const;
  /** Get as many primal rays as the solver can provide. (In case of proven
      dual infeasibility there should be at least one.)
      
      <strong>NOTE for implementers of solver interfaces:</strong> <br>
      The double pointers in the vector should point to arrays of length
      getNumCols() and they should be allocated via new[]. <br>
      
      <strong>NOTE for users of solver interfaces:</strong> <br>
      It is the user's responsibility to free the double pointers in the
      vector using delete[].
  */
  virtual std::vector<double*> getPrimalRays(int maxNumRays) const;
  
  //@}

  /*! \name Methods for row and column names.

    Because OsiCbc is a pass-through class, it's necessary to override any
    virtual method in order to be sure we catch an override by the underlying
    solver. See the OsiSolverInterface class documentation for detailed
    descriptions.
  */
  //@{

    /*! \brief Generate a standard name of the form Rnnnnnnn or Cnnnnnnn */

    virtual std::string dfltRowColName(char rc,
				 int ndx, unsigned digits = 7) const ;

    /*! \brief Return the name of the objective function */

    virtual std::string getObjName (unsigned maxLen = std::string::npos) const ;

    /*! \brief Set the name of the objective function */

    virtual void setObjName (std::string name) ;

    /*! \brief Return the name of the row.  */

    virtual std::string getRowName(int rowIndex,
				   unsigned maxLen = std::string::npos) const ;

    /*! \brief Return a pointer to a vector of row names */

    virtual const OsiNameVec &getRowNames() ;

    /*! \brief Set a row name */

    virtual void setRowName(int ndx, std::string name) ;

    /*! \brief Set multiple row names */

    virtual void setRowNames(OsiNameVec &srcNames,
		     int srcStart, int len, int tgtStart) ;

    /*! \brief Delete len row names starting at index tgtStart */

    virtual void deleteRowNames(int tgtStart, int len) ;
  
    /*! \brief Return the name of the column */

    virtual std::string getColName(int colIndex,
				   unsigned maxLen = std::string::npos) const ;

    /*! \brief Return a pointer to a vector of column names */

    virtual const OsiNameVec &getColNames() ;

    /*! \brief Set a column name */

    virtual void setColName(int ndx, std::string name) ;

    /*! \brief Set multiple column names */

    virtual void setColNames(OsiNameVec &srcNames,
		     int srcStart, int len, int tgtStart) ;

    /*! \brief Delete len column names starting at index tgtStart */
    virtual void deleteColNames(int tgtStart, int len) ;

  //@}

  //@}
  
  //---------------------------------------------------------------------------
  
  /**@name Problem modifying methods */
  //@{
  //-------------------------------------------------------------------------
  /**@name Changing bounds on variables and constraints */
  //@{
  /** Set an objective function coefficient */
  virtual void setObjCoeff( int elementIndex, double elementValue );

  using OsiSolverInterface::setColLower ;
  /** Set a single column lower bound<br>
      Use -DBL_MAX for -infinity. */
  virtual void setColLower( int elementIndex, double elementValue );
  
  using OsiSolverInterface::setColUpper ;
  /** Set a single column upper bound<br>
      Use DBL_MAX for infinity. */
  virtual void setColUpper( int elementIndex, double elementValue );
  
  /** Set a single column lower and upper bound */
  virtual void setColBounds( int elementIndex,
                             double lower, double upper );
  
  /** Set the bounds on a number of columns simultaneously<br>
      The default implementation just invokes setColLower() and
      setColUpper() over and over again.
      @param indexFirst,indexLast pointers to the beginning and after the
      end of the array of the indices of the variables whose
      <em>either</em> bound changes
      @param boundList the new lower/upper bound pairs for the variables
  */
  virtual void setColSetBounds(const int* indexFirst,
                               const int* indexLast,
                               const double* boundList);
  
  /** Set a single row lower bound<br>
      Use -DBL_MAX for -infinity. */
  virtual void setRowLower( int elementIndex, double elementValue );
  
  /** Set a single row upper bound<br>
      Use DBL_MAX for infinity. */
  virtual void setRowUpper( int elementIndex, double elementValue ) ;
  
  /** Set a single row lower and upper bound */
  virtual void setRowBounds( int elementIndex,
                             double lower, double upper ) ;
  
  /** Set the type of a single row<br> */
  virtual void setRowType(int index, char sense, double rightHandSide,
                          double range);
  
  /** Set the bounds on a number of rows simultaneously<br>
      The default implementation just invokes setRowLower() and
      setRowUpper() over and over again.
      @param indexFirst,indexLast pointers to the beginning and after the
      end of the array of the indices of the constraints whose
      <em>either</em> bound changes
      @param boundList the new lower/upper bound pairs for the constraints
  */
  virtual void setRowSetBounds(const int* indexFirst,
                               const int* indexLast,
                               const double* boundList);
  
  /** Set the type of a number of rows simultaneously<br>
      The default implementation just invokes setRowType()
      over and over again.
      @param indexFirst,indexLast pointers to the beginning and after the
      end of the array of the indices of the constraints whose
      <em>any</em> characteristics changes
      @param senseList the new senses
      @param rhsList   the new right hand sides
      @param rangeList the new ranges
  */
  virtual void setRowSetTypes(const int* indexFirst,
                              const int* indexLast,
                              const char* senseList,
                              const double* rhsList,
                              const double* rangeList);
  //@}
  
  //-------------------------------------------------------------------------
  /**@name Integrality related changing methods */
  //@{
  /** Set the index-th variable to be a continuous variable */
  virtual void setContinuous(int index);
  /** Set the index-th variable to be an integer variable */
  virtual void setInteger(int index);
  /** Set the variables listed in indices (which is of length len) to be
      continuous variables */
  virtual void setContinuous(const int* indices, int len);
  /** Set the variables listed in indices (which is of length len) to be
      integer variables */
  virtual void setInteger(const int* indices, int len);
  //@}
  
  //-------------------------------------------------------------------------
  /// Set objective function sense (1 for min (default), -1 for max,)
  virtual void setObjSense(double s ); 
  
  /** Set the primal solution column values
      
  colsol[numcols()] is an array of values of the problem column
  variables. These values are copied to memory owned by the
  solver object or the solver.  They will be returned as the
  result of colsol() until changed by another call to
  setColsol() or by a call to any solver routine.  Whether the
  solver makes use of the solution in any way is
  solver-dependent. 
  */
  virtual void setColSolution(const double * colsol);
  
  /** Set dual solution vector
      
  rowprice[numrows()] is an array of values of the problem row
  dual variables. These values are copied to memory owned by the
  solver object or the solver.  They will be returned as the
  result of rowprice() until changed by another call to
  setRowprice() or by a call to any solver routine.  Whether the
  solver makes use of the solution in any way is
  solver-dependent. 
  */
  virtual void setRowPrice(const double * rowprice);
  
  //-------------------------------------------------------------------------
  /**@name Methods to expand a problem.<br>
     Note that if a column is added then by default it will correspond to a
     continuous variable. */
  //@{
  using OsiSolverInterface::addCol ;
  /** */
  virtual void addCol(const CoinPackedVectorBase& vec,
                      const double collb, const double colub,   
                      const double obj);
  /** Add a column (primal variable) to the problem. */
  virtual void addCol(int numberElements, const int * rows, const double * elements,
                      const double collb, const double colub,   
                      const double obj) ;

  using OsiSolverInterface::addCols ;
  /** */
  virtual void addCols(const int numcols,
                       const CoinPackedVectorBase * const * cols,
                       const double* collb, const double* colub,   
                       const double* obj);
  /** */
  virtual void deleteCols(const int num, const int * colIndices);
  
  using OsiSolverInterface::addRow ;
  /** */
  virtual void addRow(const CoinPackedVectorBase& vec,
                      const double rowlb, const double rowub);
  /** */
  virtual void addRow(const CoinPackedVectorBase& vec,
                      const char rowsen, const double rowrhs,   
                      const double rowrng);

  using OsiSolverInterface::addRows ;
  /** */
  virtual void addRows(const int numrows,
                       const CoinPackedVectorBase * const * rows,
                       const double* rowlb, const double* rowub);
  /** */
  virtual void addRows(const int numrows,
                       const CoinPackedVectorBase * const * rows,
                       const char* rowsen, const double* rowrhs,   
                       const double* rowrng);
  /** */
  virtual void deleteRows(const int num, const int * rowIndices);
  
  //-----------------------------------------------------------------------
  /** Apply a collection of row cuts which are all effective.
      applyCuts seems to do one at a time which seems inefficient.
  */
  virtual void applyRowCuts(int numberCuts, const OsiRowCut * cuts);
  /** Apply a collection of row cuts which are all effective.
      applyCuts seems to do one at a time which seems inefficient.
      This uses array of pointers
  */
  virtual void applyRowCuts(int numberCuts, const OsiRowCut ** cuts);
  //@}
  //@}
  
  //---------------------------------------------------------------------------
  
public:
  
  /**@name Methods to input a problem */
  //@{
  /** Load in an problem by copying the arguments (the constraints on the
      rows are given by lower and upper bounds). If a pointer is 0 then the
      following values are the default:
      <ul>
      <li> <code>colub</code>: all columns have upper bound infinity
      <li> <code>collb</code>: all columns have lower bound 0 
      <li> <code>rowub</code>: all rows have upper bound infinity
      <li> <code>rowlb</code>: all rows have lower bound -infinity
      <li> <code>obj</code>: all variables have 0 objective coefficient
      </ul>
  */
  virtual void loadProblem(const CoinPackedMatrix& matrix,
                           const double* collb, const double* colub,   
                           const double* obj,
                           const double* rowlb, const double* rowub);
  
  /** Load in an problem by assuming ownership of the arguments (the
      constraints on the rows are given by lower and upper bounds). For
      default values see the previous method.  <br>
      <strong>WARNING</strong>: The arguments passed to this method will be
      freed using the C++ <code>delete</code> and <code>delete[]</code>
      functions. 
  */
  virtual void assignProblem(CoinPackedMatrix*& matrix,
    			     double*& collb, double*& colub, double*& obj,
    			     double*& rowlb, double*& rowub);
  
  /** Load in an problem by copying the arguments (the constraints on the
      rows are given by sense/rhs/range triplets). If a pointer is 0 then the
      following values are the default:
      <ul>
      <li> <code>colub</code>: all columns have upper bound infinity
      <li> <code>collb</code>: all columns have lower bound 0 
      <li> <code>obj</code>: all variables have 0 objective coefficient
      <li> <code>rowsen</code>: all rows are >=
      <li> <code>rowrhs</code>: all right hand sides are 0
      <li> <code>rowrng</code>: 0 for the ranged rows
      </ul>
  */
  virtual void loadProblem(const CoinPackedMatrix& matrix,
    			   const double* collb, const double* colub,
    			   const double* obj,
    			   const char* rowsen, const double* rowrhs,   
    			   const double* rowrng);
  
  /** Load in an problem by assuming ownership of the arguments (the
      constraints on the rows are given by sense/rhs/range triplets). For
      default values see the previous method. <br>
      <strong>WARNING</strong>: The arguments passed to this method will be
      freed using the C++ <code>delete</code> and <code>delete[]</code>
      functions. 
  */
  virtual void assignProblem(CoinPackedMatrix*& matrix,
    			     double*& collb, double*& colub, double*& obj,
    			     char*& rowsen, double*& rowrhs,
    			     double*& rowrng);
  
  /** Just like the other loadProblem() methods except that the matrix is
      given in a standard column major ordered format (without gaps). */
  virtual void loadProblem(const int numcols, const int numrows,
                           const CoinBigIndex * start, const int* index,
                           const double* value,
                           const double* collb, const double* colub,   
                           const double* obj,
                           const double* rowlb, const double* rowub);
  
  /** Just like the other loadProblem() methods except that the matrix is
      given in a standard column major ordered format (without gaps). */
  virtual void loadProblem(const int numcols, const int numrows,
                           const CoinBigIndex * start, const int* index,
                           const double* value,
                           const double* collb, const double* colub,   
                           const double* obj,
                           const char* rowsen, const double* rowrhs,   
                           const double* rowrng);

  using OsiSolverInterface::readMps ;
  /** Read an mps file from the given filename (defaults to Osi reader) - returns
      number of errors (see OsiMpsReader class) */
  virtual int readMps(const char *filename,
                      const char *extension = "mps") ;
  
  /** Write the problem into an mps file of the given filename.
      If objSense is non zero then -1.0 forces the code to write a
      maximization objective and +1.0 to write a minimization one.
      If 0.0 then solver can do what it wants */
  virtual void writeMps(const char *filename,
                        const char *extension = "mps",
                        double objSense=0.0) const;
  /** Write the problem into an mps file of the given filename,
      names may be null.  formatType is
      0 - normal
      1 - extra accuracy 
      2 - IEEE hex (later)
      
      Returns non-zero on I/O error
  */
  virtual int writeMpsNative(const char *filename, 
                             const char ** rowNames, const char ** columnNames,
                             int formatType=0,int numberAcross=2,
                             double objSense=0.0) const ;
  //@}
  
  /**@name Message handling (extra for Cbc messages).
     Normally I presume you would want the same language.
     If not then you could use underlying model pointer */
  //@{
  /// Set language
  void newLanguage(CoinMessages::Language language);
  void setLanguage(CoinMessages::Language language)
  {newLanguage(language);}
  //@}
  //---------------------------------------------------------------------------
  
  /**@name Cbc specific public interfaces */
  //@{
  /// Get pointer to Cbc model
  inline CbcModel * getModelPtr() const 
  { return modelPtr_;}
  /// Get pointer to underlying solver
  inline OsiSolverInterface * getRealSolverPtr() const 
  { return modelPtr_->solver();}
  /// Set cutoff bound on the objective function.
  inline void setCutoff(double value) 
  { modelPtr_->setCutoff(value);}
  /// Get the cutoff bound on the objective function - always as minimize
  inline double getCutoff() const
  { return modelPtr_->getCutoff();}
  /// Set the CbcModel::CbcMaxNumNode maximum node limit 
  inline void setMaximumNodes( int value)
  { modelPtr_->setMaximumNodes(value);}
  /// Get the CbcModel::CbcMaxNumNode maximum node limit
  inline int getMaximumNodes() const
  { return modelPtr_->getMaximumNodes();}
  /// Set the CbcModel::CbcMaxNumSol maximum number of solutions
  inline void setMaximumSolutions( int value) 
  { modelPtr_->setMaximumSolutions(value);}
  /// Get the CbcModel::CbcMaxNumSol maximum number of solutions 
  inline int getMaximumSolutions() const 
  { return modelPtr_->getMaximumSolutions();}
  /// Set the CbcModel::CbcMaximumSeconds maximum number of seconds 
  inline void setMaximumSeconds( double value) 
  { modelPtr_->setMaximumSeconds(value);}
  /// Get the CbcModel::CbcMaximumSeconds maximum number of seconds 
  inline double getMaximumSeconds() const 
  { return modelPtr_->getMaximumSeconds();}
  /// Node limit reached?
  inline bool isNodeLimitReached() const
  { return modelPtr_->isNodeLimitReached();}
  /// Solution limit reached?
  inline bool isSolutionLimitReached() const
  { return modelPtr_->isSolutionLimitReached();}
  /// Get how many Nodes it took to solve the problem.
  inline int getNodeCount() const
  { return modelPtr_->getNodeCount();}
    /// Final status of problem - 0 finished, 1 stopped, 2 difficulties
    inline int status() const
  { return modelPtr_->status();}
  /** Pass in a message handler
  
    It is the client's responsibility to destroy a message handler installed
    by this routine; it will not be destroyed when the solver interface is
    destroyed. 
  */
  virtual void passInMessageHandler(CoinMessageHandler * handler);
  //@}
  
  //---------------------------------------------------------------------------
  
  /**@name Constructors and destructors */
  //@{
  /// Default Constructor
  OsiCbcSolverInterface (OsiSolverInterface * solver=NULL,
                         CbcStrategy * strategy=NULL);
  
  /// Clone
  virtual OsiSolverInterface * clone(bool copyData = true) const;
  
  /// Copy constructor 
  OsiCbcSolverInterface (const OsiCbcSolverInterface &);
#if 0    
  /// Borrow constructor - only delete one copy
  OsiCbcSolverInterface (CbcModel * rhs, bool reallyOwn=false);
  
  /// Releases so won't error
  void releaseCbc();
#endif    
  /// Assignment operator 
  OsiCbcSolverInterface & operator=(const OsiCbcSolverInterface& rhs);
  
  /// Destructor 
  virtual ~OsiCbcSolverInterface ();
  
  //@}
  //---------------------------------------------------------------------------
  
protected:
  ///@name Protected methods
  //@{
  /** Apply a row cut (append to constraint matrix). */
  virtual void applyRowCut(const OsiRowCut& rc);
  
  /** Apply a column cut (adjust one or more bounds). */
  virtual void applyColCut(const OsiColCut& cc);
  //@}
  /**@name Protected member data */
  //@{
  /// Cbc model represented by this class instance
  mutable CbcModel * modelPtr_;
  //@}
};
// So unit test can find out if NDEBUG set
bool OsiCbcHasNDEBUG();

//#############################################################################
/** A function that tests the methods in the OsiCbcSolverInterface class. */
void OsiCbcSolverInterfaceUnitTest(const std::string & mpsDir, const std::string & netlibDir);

#endif