This file is indexed.

/usr/share/mmass/mspy/obj_scan.py is in mmass 5.5.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
# -------------------------------------------------------------------------
#     Copyright (C) 2005-2013 Martin Strohalm <www.mmass.org>

#     This program is free software; you can redistribute it and/or modify
#     it under the terms of the GNU General Public License as published by
#     the Free Software Foundation; either version 3 of the License, or
#     (at your option) any later version.

#     This program is distributed in the hope that it will be useful,
#     but WITHOUT ANY WARRANTY; without even the implied warranty of
#     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#     GNU General Public License for more details.

#     Complete text of GNU GPL can be found in the file LICENSE.TXT in the
#     main directory of the program.
# -------------------------------------------------------------------------

#load libs
import numpy
import copy

# load stopper
from mod_stopper import CHECK_FORCE_QUIT

# load objects
import obj_peak
import obj_peaklist

# load modules
import mod_signal
import mod_peakpicking


# SCAN OBJECT DEFINITION
# ----------------------

class scan:
    """Scan object definition."""
    
    def __init__(self, profile=[], peaklist=[], **attr):
        
        self.title = ''
        self.scanNumber = None
        self.parentScanNumber = None
        self.polarity = None
        self.msLevel = None
        self.retentionTime = None
        self.totIonCurrent = None
        self.basePeakMZ = None
        self.basePeakIntensity = None
        self.precursorMZ = None
        self.precursorIntensity = None
        self.precursorCharge = None
        
        # buffers
        self._baseline = None
        self._baselineParams = {'window': None, 'offset': None}
        
        # convert profile to numPy array
        if not isinstance(profile, numpy.ndarray):
            profile = numpy.array(profile)
        self.profile = profile
        
        # convert peaks to peaklist
        if not isinstance(peaklist, obj_peaklist.peaklist):
            peaklist = obj_peaklist.peaklist(peaklist)
        self.peaklist = peaklist
        
        # get additional attributes
        self.attributes = {}
        for name, value in attr.items():
            self.attributes[name] = value
    # ----
    
    
    def __len__(self):
        return len(self.profile)
    # ----
    
    
    def __add__(self, other):
        """Return A+B."""
        
        new = self.duplicate()
        new.combine(other)
        return new
    # ----
    
    
    def __sub__(self, other):
        """Return A-B."""
        
        new = self.duplicate()
        new.subtract(other)
        return new
    # ----
    
    
    def __mul__(self, y):
        """Return A*y."""
        
        new = self.duplicate()
        new.multiply(y)
        return new
    # ----
    
    
    def reset(self):
        """Clear scan buffers."""
        
        self._baseline = None
        self._baselineParams = {'window': None, 'offset': None}
    # ----
    
    
    
    # GETTERS
    
    def duplicate(self):
        """Return copy of current scan."""
        return copy.deepcopy(self)
    # ----
    
    
    def noise(self, minX=None, maxX=None, mz=None, window=0.1):
        """Return noise level and width for specified m/z range or m/z value.
            minX (float) - lower m/z limit
            maxX (float) - upper m/z limit
            mz (float) - m/z value
            window (float) - percentage around specified m/z value to use for noise calculation
        """
        
        # calculate noise
        return mod_signal.noise(
            signal = self.profile,
            minX = minX,
            maxX = maxX,
            x = mz,
            window = window
        )
    # ----
    
    
    def baseline(self, window=0.1, offset=0.):
        """Return spectrum baseline data.
            window (float or None) - noise calculation window (%/100)
            offset (float) - baseline offset, relative to noise width (in %/100)
        """
        
        # calculate baseline
        if self._baseline == None \
            or self._baselineParams['window'] != window \
            or self._baselineParams['offset'] != offset:
            
            self._baseline = mod_signal.baseline(
                signal = self.profile,
                window = window,
                offset = offset
            )
            
            self._baselineParams['window'] = window
            self._baselineParams['offset'] = offset
        
        return self._baseline
    # ----
    
    
    def normalization(self):
        """Return normalization params."""
        
        # calculate range for spectrum and peaklist
        if len(self.profile) > 0 and len(self.peaklist) > 0:
            spectrumMax = numpy.maximum.reduce(self.profile)[1]
            spectrumMin = numpy.minimum.reduce(self.profile)[1]
            peaklistMax = max([peak.ai for peak in self.peaklist])
            peaklistMin = min([peak.base for peak in self.peaklist])
            
            return max(spectrumMax, peaklistMax)/100.
        
        # calculate range for spectrum only
        elif len(self.profile) > 0:
            spectrumMax = numpy.maximum.reduce(self.profile)[1]
            shift = numpy.minimum.reduce(self.profile)[1]
            
            return spectrumMax/100.
        
        # calculate range for peaklist only
        elif len(self.peaklist) > 0:
            peaklistMax = max([peak.ai for peak in self.peaklist])
            shift = min([peak.base for peak in self.peaklist])
            
            return peaklistMax/100.
        
        # no data
        else:
            return 1.
    # ----
    
    
    def intensity(self, mz):
        """Return interpolated intensity for given m/z.
            mz (float) - m/z value
        """
        
        # calculate peak intensity
        return mod_signal.intensity(self.profile, mz)
    # ----
    
    
    def width(self, mz, intensity):
        """Return peak width for given m/z and height.
            mz (float) - peak m/z value
            intensity (float) - intensity of width measurement
        """
        
        # calculate peak width
        return mod_signal.width(self.profile, mz, intensity)
    # ----
    
    
    def area(self, minX=None, maxX=None, baselineWindow=0.1, baselineOffset=0.):
        """Return labeled peak in given m/z range.
            minX (float) - starting m/z value
            maxX (float) - ending m/z value
            baselineWindow (float or None) - noise calculation window (%/100)
            baselineOffset (float) - baseline offset, relative to noise width (in %/100)
        """
        
        # check data
        if len(self.profile) == 0:
            return 0.0
        
        # get baseline
        baseline = self.baseline(
            window = baselineWindow,
            offset = baselineOffset
        )
        
        # get peak area
        area = mod_signal.area(
            signal = self.profile,
            minX = minX,
            maxX = maxX,
            baseline = baseline
        )
        
        return area
    # ----
    
    
    def hasprofile(self):
        """Return true if scan has profile data."""
        return bool(len(self.profile))
    # ----
    
    
    def haspeaks(self):
        """Return true if scan has peaks in peaklist."""
        return bool(len(self.peaklist))
    # ----
    
    
    
    # SETTERS
    
    def setprofile(self, profile):
        """Set new profile data."""
        
        self.profile = profile
        self.reset()
    # ----
    
    
    def setpeaklist(self, peaks):
        """Set new peaklist."""
        
        # convert peaks to peaklist
        if isinstance(peaks, obj_peaklist.peaklist):
            self.peaklist = peaks
        else:
            self.peaklist = obj_peaklist.peaklist(peaks)
    # ----
    
    
    
    # MODIFIERS
    
    def swap(self):
        """Swap data between profile and peaklist."""
        
        # make new profile
        profile = [[i.mz, i.ai] for i in self.peaklist]
        profile = numpy.array(profile)
        
        # make new peaklist
        peaks = [obj_peak.peak(i[0],i[1]) for i in self.profile]
        peaks = obj_peaklist.peaklist(peaks)
        
        # update scan
        self.profile = profile
        self.peaklist = peaks
        
        # clear buffers
        self.reset()
    # ----
    
    
    def crop(self, minX, maxX):
        """Crop profile and peaklist.
            minX (float) - lower m/z limit
            maxX (float) - upper m/z limit
        """
        
        # crop spectrum data
        self.profile = mod_signal.crop(self.profile, minX, maxX)
        
        # crop peaklist data
        self.peaklist.crop(minX, maxX)
        
        # clear buffers
        self.reset()
    # ----
    
    
    def multiply(self, y):
        """Multiply profile and peaklist by Y.
            y (int or float) - multiplier factor
        """
        
        # multiply spectrum
        if len(self.profile):
            self.profile = mod_signal.multiply(self.profile, y=y)
        
        # multiply peakslist
        self.peaklist.multiply(y)
        
        # clear buffers
        self.reset()
    # ----
    
    
    def normalize(self):
        """Normalize profile and peaklist."""
        
        # get normalization params
        f = self.normalization()
        
        # normalize profile
        if len(self.profile) > 0:
            self.profile /= numpy.array((1, f))
        
        # normalize peaklist
        if len(self.peaklist) > 0:
            for peak in self.peaklist:
                peak.setai(peak.ai / f)
                peak.setbase(peak.base / f)
            self.peaklist.reset()
        
        # clear buffers
        self.reset()
    # ----
    
    
    def combine(self, other):
        """Add data from given scan.
            other (mspy.scan) - scan to combine with
        """
        
        # check scan
        if not isinstance(other, scan):
            raise TypeError, "Cannot combine with non-scan object!"
        
        # use profiles only
        if len(self.profile) or len(other.profile):
            
            # combine profiles
            self.profile = mod_signal.combine(self.profile, other.profile)
            
            # empty peaklist
            self.peaklist.empty()
        
        # use peaklists only
        elif len(self.peaklist) or len(other.peaklist):
            self.peaklist.combine(other.peaklist)
        
        # clear buffers
        self.reset()
    # ----
    
    
    def overlay(self, other):
        """Overlay with data from given scan.
            other (mspy.scan) - scan to overlay with
        """
        
        # check scan
        if not isinstance(other, scan):
            raise TypeError, "Cannot overlay with non-scan object!"
        
        # use profiles only
        if len(self.profile) or len(other.profile):
            
            # overlay profiles
            self.profile = mod_signal.overlay(self.profile, other.profile)
            
            # empty peaklist
            self.peaklist.empty()
            
            # clear buffers
            self.reset()
    # ----
    
    
    def subtract(self, other):
        """Subtract given data from current scan.
            other (mspy.scan) - scan to subtract
        """
        
        # check scan
        if not isinstance(other, scan):
            raise TypeError, "Cannot subtract non-scan object!"
        
        # use profiles only
        if len(self.profile) and len(other.profile):
            
            # subtract profile
            self.profile = mod_signal.subtract(self.profile, other.profile)
            
            # empty peaklist
            self.peaklist.empty()
            
            # clear buffers
            self.reset()
    # ----
    
    
    def smooth(self, method, window, cycles=1):
        """Smooth profile.
            method (MA GA SG) - smoothing method
            window (float) - m/z window size for smoothing
            cycles (int) - number of repeating cycles
        """
        
        # smooth data
        profile = mod_signal.smooth(
            signal = self.profile,
            method = method,
            window = window,
            cycles = cycles
        )
        
        # store data
        self.profile = profile
        self.peaklist.empty()
        
        # clear buffers
        self.reset()
    # ----
    
    
    def recalibrate(self, fn, params):
        """Apply calibration to profile and peaklist.
            fn (function) - calibration model
            params (list or tuple) - params for calibration model
        """
        
        # calibrate profile
        for x, point in enumerate(self.profile):
            self.profile[x][0] = fn(params, point[0])
        
        # calibrate peaklist
        self.peaklist.recalibrate(fn, params)
        
        # clear buffers
        self.reset()
    # ----
    
    
    def subbase(self, window=0.1, offset=0.):
        """Subtract baseline from profile.
            window (float or None) - noise calculation window (%/100)
            offset (float) - baseline offset, relative to noise width (in %/100)
        """
        
        # get baseline
        baseline = self.baseline(
            window = window,
            offset = offset
        )
        
        # subtract baseline
        profile = mod_signal.subbase(
            signal = self.profile,
            baseline = baseline
        )
        
        # store data
        self.profile = profile
        self.peaklist.empty()
        
        # clear buffers
        self.reset()
    # ----
    
    
    
    # PEAKLIST FUNCTIONS
    
    def labelscan(self, pickingHeight=0.75, absThreshold=0., relThreshold=0., snThreshold=0., baselineWindow=0.1, baselineOffset=0., smoothMethod=None, smoothWindow=0.2, smoothCycles=1):
        """Label centroides in current scan.
            pickingHeight (float) - peak picking height for centroiding
            absThreshold (float) - absolute intensity threshold
            relThreshold (float) - relative intensity threshold
            snThreshold (float) - signal to noise threshold
            baselineWindow (float) - noise calculation window (in %/100)
            baselineOffset (float) - baseline offset, relative to noise width (in %/100)
            smoothMethod (None, MA, GA or SG) - smoothing method
            smoothWindow (float) - m/z window size for smoothing
            smoothCycles (int) - number of smoothing cycles
        """
        
        # get baseline
        baseline = self.baseline(
            window = baselineWindow,
            offset = baselineOffset
        )
        
        # pre-smooth profile
        profile = self.profile
        if smoothMethod:
            profile = mod_signal.smooth(
                signal = profile,
                method = smoothMethod,
                window = smoothWindow,
                cycles = smoothCycles
            )
        
        # label peaks
        peaklist = mod_peakpicking.labelscan(
            signal = profile,
            pickingHeight = pickingHeight,
            absThreshold = absThreshold,
            relThreshold = relThreshold,
            snThreshold = snThreshold,
            baseline = baseline
        )
        
        # check peaklist
        if peaklist == None:
            return False
        
        # update peaklist
        self.peaklist = peaklist
        
        return True
    # ----
    
    
    def labelpeak(self, mz=None, minX=None, maxX=None, pickingHeight=0.75, baselineWindow=0.1, baselineOffset=0.):
        """Return labeled peak in given m/z range.
            mz (float) - m/z value to label
            minX (float) - m/z range start
            maxX (float) - m/z range end
            pickingHeight (float) - centroiding height
            baselineWindow (float) - noise calculation window (in %/100)
            baselineOffset (float) - baseline offset, relative to noise width (in %/100)
        """
        
        # get baseline
        baseline = self.baseline(
            window = baselineWindow,
            offset = baselineOffset
        )
        
        # label peak
        peak = mod_peakpicking.labelpeak(
            signal = self.profile,
            mz = mz,
            minX = minX,
            maxX = maxX,
            pickingHeight = pickingHeight,
            baseline = baseline
        )
        
        # check peak
        if not peak:
            return False
        
        # append peak
        self.peaklist.append(peak)
        
        return True
    # ----
    
    
    def labelpoint(self, mz, baselineWindow=0.1, baselineOffset=0.):
        """Label peak at given m/z value.
            mz (float) - m/z value to label
            baselineWindow (float) - noise calculation window (in %/100)
            baselineOffset (float) - baseline offset, relative to noise width (in %/100)
        """
        
        # get baseline
        baseline = self.baseline(
            window = baselineWindow,
            offset = baselineOffset
        )
        
        # label point
        peak = mod_peakpicking.labelpoint(
            signal = self.profile,
            mz = mz,
            baseline = baseline
        )
        
        # check peak
        if not peak:
            return False
        
        # append peak
        self.peaklist.append(peak)
        
        return True
    # ----
    
    
    def deisotope(self, maxCharge=1, mzTolerance=0.15, intTolerance=0.5, isotopeShift=0.0):
        """Calculate peak charges and find isotopes.
            maxCharge (float) - max charge to be searched
            zTolerance (float) - absolute m/z tolerance for isotopes distance
            intTolerance (float) - relative intensity tolerance for isotopes and model (in %/100)
            isotopeShift (float) - isotope distance correction (neutral mass) (for HDX etc.)
        """
        
        # find istopes
        self.peaklist.deisotope(
            maxCharge = maxCharge,
            mzTolerance = mzTolerance,
            intTolerance = intTolerance,
            isotopeShift = isotopeShift
        )
    # ----
    
    
    def deconvolute(self, massType=0):
        """Recalculate peaklist to singly charged.
            massType (0 or 1) - mass type used for m/z re-calculation, 0 = monoisotopic, 1 = average
        """
        
        # delete profile data
        self.profile = numpy.array([])
        
        # deconvolute peaklist
        self.peaklist.deconvolute(massType=massType)
        
        # clear buffers
        self.reset()
    # ----
    
    
    def consolidate(self, window, forceWindow=False):
        """Group peaks within specified window.
            window (float) - default grouping window if no peak fwhm
            forceWindow (bool) - use default window for all peaks instead of fwhm
        """
        
        self.peaklist.consolidate(
            window = window,
            forceWindow = forceWindow
        )
    # ----
    
    
    def remthreshold(self, absThreshold=0., relThreshold=0., snThreshold=0.):
        """Remove peaks below threshold.
            absThreshold (float) - absolute intensity threshold
            relThreshold (float) - relative intensity threshold
            snThreshold (float) - signal to noise threshold
        """
        
        self.peaklist.remthreshold(
            absThreshold = absThreshold,
            relThreshold = relThreshold,
            snThreshold = snThreshold
        )
    # ----
    
    
    def remshoulders(self, window=2.5, relThreshold=0.05, fwhm=0.01):
        """Remove shoulder peaks from current peaklist.
            window (float) - peak width multiplier to make search window
            relThreshold (float) - max relative intensity of shoulder/parent peak (in %/100)
            fwhm (float) - default peak width if not set in peak
        """
        
        self.peaklist.remshoulders(
            window = window,
            relThreshold = relThreshold,
            fwhm = fwhm
        )
    # ----
    
    
    def remisotopes(self):
        """Remove isotopes from current peaklist."""
        self.peaklist.remisotopes()
    # ----
    
    
    def remuncharged(self):
        """Remove uncharged peaks from current peaklist."""
        self.peaklist.remuncharged()
    # ----