/usr/include/thrust/complex.h is in libthrust-dev 1.8.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 | /*
* Copyright 2008-2013 NVIDIA Corporation
* Copyright 2013 Filipe RNC Maia
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*! \file complex.h
* \brief Complex numbers
*/
#pragma once
#include <thrust/detail/config.h>
#include <cmath>
#include <complex>
#include <sstream>
#include <thrust/detail/type_traits.h>
namespace thrust
{
/*
* Calls to the standard math library from inside the thrust namespace
* with real arguments require explicit scope otherwise they will fail
* to resolve as it will find the equivalent complex function but then
* fail to match the template, and give up looking for other scopes.
*/
/*! \addtogroup numerics
* \{
*/
/*! \addtogroup complex_numbers Complex Numbers
* \{
*/
/*! \p complex is the Thrust equivalent to <tt>std::complex</tt>. It is functionally
* equivalent to it, but can also be used in device code which <tt>std::complex</tt> currently cannot.
*
* \tparam T The type used to hold the real and imaginary parts. Should be <tt>float</tt>
* or <tt>double</tt>. Others types are not supported.
*
*/
template <typename T>
struct complex
{
public:
/*! \p value_type is the type of \p complex's real and imaginary parts.
*/
typedef T value_type;
/* --- Constructors --- */
/*! Construct a complex number from its real and imaginary parts.
*
* \param re The real part of the number.
* \param im The imaginary part of the number.
*/
inline __host__ __device__
complex(const T & re = T(), const T& im = T());
/*! This copy constructor copies from a \p complex with a type that
* is convertible to this \p complex \c value_type.
*
* \param z The \p complex to copy from.
*
* \tparam X is convertible to \c value_type.
*/
template <typename X>
inline __host__ __device__
complex(const complex<X> & z);
/*! This copy constructor copies from a <tt>std::complex</tt> with a type that
* is convertible to this \p complex \c value_type.
*
* \param z The \p complex to copy from.
*
* \tparam X is convertible to \c value_type.
*/
template <typename X>
inline __host__
complex(const std::complex<X> & z);
/* --- Compound Assignment Operators --- */
/*! Adds a \p complex to this \p complex and
* assigns the result to this \p complex.
*
* \param z The \p complex to be Added.
*/
__host__ __device__
inline complex<T>& operator+=(const complex<T> z);
/*! Subtracts a \p complex from this \p complex and
* assigns the result to this \p complex.
*
* \param z The \p complex to be subtracted.
*/
__host__ __device__
inline complex<T>& operator-=(const complex<T> z);
/*! Multiplies this \p complex by another \p complex and
* assigns the result to this \p complex.
*
* \param z The \p complex to be multiplied.
*/
__host__ __device__
inline complex<T>& operator*=(const complex<T> z);
/*! Divides this \p complex by another \p complex and
* assigns the result to this \p complex.
*
* \param z The \p complex to be divided.
*/
__host__ __device__
inline complex<T>& operator/=(const complex<T> z);
/* --- Getter functions ---
* The volatile ones are there to help for example
* with certain reductions optimizations
*/
/*! Returns the real part of this \p complex.
*/
__host__ __device__ inline T real() const volatile{ return m_data[0]; }
/*! Returns the imaginary part of this \p complex.
*/
__host__ __device__ inline T imag() const volatile{ return m_data[1]; }
/*! Returns the real part of this \p complex.
*/
__host__ __device__ inline T real() const{ return m_data[0]; }
/*! Returns the imaginary part of this \p complex.
*/
__host__ __device__ inline T imag() const{ return m_data[1]; }
/* --- Setter functions ---
* The volatile ones are there to help for example
* with certain reductions optimizations
*/
/*! Sets the real part of this \p complex.
*
* \param re The new real part of this \p complex.
*/
__host__ __device__ inline void real(T re)volatile{ m_data[0] = re; }
/*! Sets the imaginary part of this \p complex.
*
* \param im The new imaginary part of this \p complex.e
*/
__host__ __device__ inline void imag(T im)volatile{ m_data[1] = im; }
/*! Sets the real part of this \p complex.
*
* \param re The new real part of this \p complex.
*/
__host__ __device__ inline void real(T re){ m_data[0] = re; }
/*! Sets the imaginary part of this \p complex.
*
* \param im The new imaginary part of this \p complex.
*/
__host__ __device__ inline void imag(T im){ m_data[1] = im; }
/* --- Casting functions --- */
/*! Casts this \p complex to a <tt>std::complex</tt> of the same type.
*/
inline operator std::complex<T>() const { return std::complex<T>(real(),imag()); }
private:
T m_data[2];
};
/* --- General Functions --- */
/*! Returns the magnitude (also known as absolute value) of a \p complex.
*
* \param z The \p complex from which to calculate the absolute value.
*/
template<typename T> __host__ __device__ inline T abs(const complex<T>& z);
/*! Returns the phase angle (also known as argument) in radians of a \p complex.
*
* \param z The \p complex from which to calculate the phase angle.
*/
template<typename T> __host__ __device__ inline T arg(const complex<T>& z);
/*! Returns the square of the magnitude of a \p complex.
*
* \param z The \p complex from which to calculate the norm.
*/
template<typename T> __host__ __device__ inline T norm(const complex<T>& z);
/*! Returns the complex conjugate of a \p complex.
*
* \param z The \p complex from which to calculate the complex conjugate.
*/
template<typename T> __host__ __device__ inline complex<T> conj(const complex<T>& z);
/*! Returns a \p complex with the specified magnitude and phase.
*
* \param m The magnitude of the returned \p complex.
* \param theta The phase of the returned \p complex in radians.
*/
template<typename T> __host__ __device__ inline complex<T> polar(const T& m, const T& theta = 0);
/*! Returns the projection of a \p complex on the Riemann sphere.
* For all finite \p complex it returns the argument. For \p complexs
* with a non finite part returns (INFINITY,+/-0) where the sign of
* the zero matches the sign of the imaginary part of the argument.
*
* \param z The \p complex argument.
*/
template<typename T> __host__ __device__ inline complex<T> proj(const T& z);
/* --- Binary Arithmetic operators --- */
/*! Multiplies two \p complex numbers.
*
* \param lhs The first \p complex.
* \param rhs The second \p complex.
*/
template <typename T> __host__ __device__ inline complex<T> operator*(const complex<T>& lhs, const complex<T>& rhs);
/*! Multiplies a \p complex number by a scalar.
*
* \param lhs The \p complex.
* \param rhs The scalar.
*/
template <typename T> __host__ __device__ inline complex<T> operator*(const complex<T>& lhs, const T & rhs);
/*! Multiplies a scalr by a \p complex number.
*
* \param lhs The scalar.
* \param rhs The \p complex.
*/
template <typename T> __host__ __device__ inline complex<T> operator*(const T& lhs, const complex<T>& rhs);
/*! Divides two \p complex numbers.
*
* \param lhs The numerator (dividend).
* \param rhs The denomimator (divisor).
*/
template <typename T> __host__ __device__ inline complex<T> operator/(const complex<T>& lhs, const complex<T>& rhs);
/*! Divides a \p complex number by a scalar.
*
* \param lhs The complex numerator (dividend).
* \param rhs The scalar denomimator (divisor).
*/
template <typename T> __host__ __device__ inline complex<T> operator/(const complex<T>& lhs, const T & rhs);
/*! Divides a scalar by a \p complex number.
*
* \param lhs The scalar numerator (dividend).
* \param rhs The complex denomimator (divisor).
*/
template <typename T> __host__ __device__ inline complex<T> operator/(const T& lhs, const complex<T> & rhs);
/*! Adds two \p complex numbers.
*
* \param lhs The first \p complex.
* \param rhs The second \p complex.
*/
template <typename T> __host__ __device__ inline complex<T> operator+(const complex<T>& lhs, const complex<T>& rhs);
/*! Adds a scalar to a \p complex number.
*
* \param lhs The \p complex.
* \param rhs The scalar.
*/
template <typename T> __host__ __device__ inline complex<T> operator+(const complex<T>& lhs, const T & rhs);
/*! Adds a \p complex number to a scalar.
*
* \param lhs The scalar.
* \param rhs The \p complex.
*/
template <typename T> __host__ __device__ inline complex<T> operator+(const T& lhs, const complex<T>& rhs);
/*! Subtracts two \p complex numbers.
*
* \param lhs The first \p complex (minuend).
* \param rhs The second \p complex (subtrahend).
*/
template <typename T> __host__ __device__ inline complex<T> operator-(const complex<T>& lhs, const complex<T>& rhs);
/*! Subtracts a scalar from a \p complex number.
*
* \param lhs The \p complex (minuend).
* \param rhs The scalar (subtrahend).
*/
template <typename T> __host__ __device__ inline complex<T> operator-(const complex<T>& lhs, const T & rhs);
/*! Subtracts a \p complex number from a scalar.
*
* \param lhs The scalar (minuend).
* \param rhs The \p complex (subtrahend).
*/
template <typename T> __host__ __device__ inline complex<T> operator-(const T& lhs, const complex<T>& rhs);
/* --- Unary Arithmetic operators --- */
/*! Unary plus, returns its \p complex argument.
*
* \param rhs The \p complex argument.
*/
template <typename T> __host__ __device__ inline complex<T> operator+(const complex<T>& rhs);
/*! Unary minus, returns the additive inverse (negation) of its \p complex argument.
*
* \param rhs The \p complex argument.
*/
template <typename T> __host__ __device__ inline complex<T> operator-(const complex<T>& rhs);
/* --- Exponential Functions --- */
/*! Returns the complex exponential of a \p complex number.
*
* \param z The \p complex argument.
*/
template <typename T> __host__ __device__ complex<T> exp(const complex<T>& z);
/*! Returns the complex natural logarithm of a \p complex number.
*
* \param z The \p complex argument.
*/
template <typename T> __host__ __device__ complex<T> log(const complex<T>& z);
/*! Returns the complex base 10 logarithm of a \p complex number.
*
* \param z The \p complex argument.
*/
template <typename T> __host__ __device__ inline complex<T> log10(const complex<T>& z);
/* --- Power Functions --- */
/*! Returns a \p complex number raised to another.
*
* \param x The base.
* \param y The exponent.
*/
template <typename T> __host__ __device__ complex<T> pow(const complex<T>& x, const complex<T>& y);
/*! Returns a \p complex number raised to a scalar.
*
* \param x The \p complex base.
* \param y The scalar exponent.
*/
template <typename T> __host__ __device__ complex<T> pow(const complex<T>& x, const T& y);
/*! Returns a scalar raised to a \p complex number.
*
* \param x The scalar base.
* \param y The \p complex exponent.
*/
template <typename T> __host__ __device__ complex<T> pow(const T& x, const complex<T>& y);
#if !defined _MSC_VER
/*! Returns a \p complex number raised to another. The types of the two \p complex should be compatible
* and the type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The base.
* \param y The exponent.
*/
template <typename T, typename U> __host__ __device__ complex<typename detail::promoted_numerical_type<T,U>::type > pow(const complex<T>& x, const complex<U>& y);
/*! Returns a \p complex number raised to a scalar. The type of the \p complex should be compatible with the scalar
* and the type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The base.
* \param y The exponent.
*/
template <typename T, typename U> __host__ __device__ complex<typename detail::promoted_numerical_type<T,U>::type > pow(const complex<T>& x, const U& y);
/*! Returns a scalar raised to a \p complex number. The type of the \p complex should be compatible with the scalar
* and the type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The base.
* \param y The exponent.
*/
template <typename T, typename U> __host__ __device__ complex<typename detail::promoted_numerical_type<T,U>::type > pow(const T& x,const complex<U>& y);
#endif // !defined _MSC_VER
/*! Returns the complex square root of a \p complex number.
*
* \param z The \p complex argument.
*/
template <typename T> __host__ __device__ complex<T> sqrt(const complex<T>&z);
/* --- Trigonometric Functions --- */
/*! Returns the complex cosine of a \p complex number.
*
* \param z The \p complex argument.
*/
template <typename T> __host__ __device__ complex<T> cos(const complex<T>&z);
/*! Returns the complex sine of a \p complex number.
*
* \param z The \p complex argument.
*/
template <typename T> __host__ __device__ complex<T> sin(const complex<T>&z);
/*! Returns the complex tangent of a \p complex number.
*
* \param z The \p complex argument.
*/
template <typename T> __host__ __device__ complex<T> tan(const complex<T>&z);
/* --- Hyperbolic Functions --- */
/*! Returns the complex hyperbolic cosine of a \p complex number.
*
* \param z The \p complex argument.
*/
template <typename T> __host__ __device__ complex<T> cosh(const complex<T>& z);
/*! Returns the complex hyperbolic sine of a \p complex number.
*
* \param z The \p complex argument.
*/
template <typename T> __host__ __device__ complex<T> sinh(const complex<T>&z);
/*! Returns the complex hyperbolic tangent of a \p complex number.
*
* \param z The \p complex argument.
*/
template <typename T> __host__ __device__ complex<T> tanh(const complex<T>&z);
/* --- Inverse Trigonometric Functions --- */
/*! Returns the complex arc cosine of a \p complex number.
*
* The range of the real part of the result is [0, Pi] and
* the range of the imaginary part is [-inf, +inf]
*
* \param z The \p complex argument.
*/
template <typename T> __host__ __device__ complex<T> acos(const complex<T>& z);
/*! Returns the complex arc sine of a \p complex number.
*
* The range of the real part of the result is [-Pi/2, Pi/2] and
* the range of the imaginary part is [-inf, +inf]
*
* \param z The \p complex argument.
*/
template <typename T> __host__ __device__ complex<T> asin(const complex<T>& z);
/*! Returns the complex arc tangent of a \p complex number.
*
* The range of the real part of the result is [-Pi/2, Pi/2] and
* the range of the imaginary part is [-inf, +inf]
*
* \param z The \p complex argument.
*/
template <typename T> __host__ __device__ complex<T> atan(const complex<T>& z);
/* --- Inverse Hyperbolic Functions --- */
/*! Returns the complex inverse hyperbolic cosine of a \p complex number.
*
* The range of the real part of the result is [0, +inf] and
* the range of the imaginary part is [-Pi, Pi]
*
* \param z The \p complex argument.
*/
template <typename T> __host__ __device__ complex<T> acosh(const complex<T>& z);
/*! Returns the complex inverse hyperbolic sine of a \p complex number.
*
* The range of the real part of the result is [-inf, +inf] and
* the range of the imaginary part is [-Pi/2, Pi/2]
*
* \param z The \p complex argument.
*/
template <typename T> __host__ __device__ complex<T> asinh(const complex<T>& z);
/*! Returns the complex inverse hyperbolic tangent of a \p complex number.
*
* The range of the real part of the result is [-inf, +inf] and
* the range of the imaginary part is [-Pi/2, Pi/2]
*
* \param z The \p complex argument.
*/
template <typename T> __host__ __device__ complex<T> atanh(const complex<T>& z);
/* --- Stream Operators --- */
/*! Writes to an output stream a \p complex number in the form (real,imaginary).
*
* \param os The output stream.
* \param z The \p complex number to output.
*/
template<typename ValueType,class charT, class traits>
std::basic_ostream<charT, traits>& operator<<(std::basic_ostream<charT, traits>& os, const complex<ValueType>& z);
/*! Reads a \p complex number from an input stream.
* The recognized formats are:
* - real
* - (real)
* - (real, imaginary)
*
* The values read must be convertible to the \p complex's \c value_type
*
* \param is The input stream.
* \param z The \p complex number to set.
*/
template<typename ValueType, typename charT, class traits>
std::basic_istream<charT, traits>&
operator>>(std::basic_istream<charT, traits>& is, complex<ValueType>& z);
/* --- Equality Operators --- */
/*! Returns true if two \p complex numbers are equal and false otherwise.
*
* \param lhs The first \p complex.
* \param rhs The second \p complex.
*/
template <typename T> __host__ __device__ inline bool operator==(const complex<T>& lhs, const complex<T>& rhs);
/*! Returns true if the imaginary part of the \p complex number is zero and the real part is equal to the scalar. Returns false otherwise.
*
* \param lhs The scalar.
* \param rhs The \p complex.
*/
template <typename T> __host__ __device__ inline bool operator==(const T & lhs, const complex<T>& rhs);
/*! Returns true if the imaginary part of the \p complex number is zero and the real part is equal to the scalar. Returns false otherwise.
*
* \param lhs The \p complex.
* \param rhs The scalar.
*/
template <typename T> __host__ __device__ inline bool operator==(const complex<T> & lhs, const T& rhs);
/*! Returns true if two \p complex numbers are different and false otherwise.
*
* \param lhs The first \p complex.
* \param rhs The second \p complex.
*/
template <typename T> __host__ __device__ inline bool operator!=(const complex<T>& lhs, const complex<T>& rhs);
/*! Returns true if the imaginary part of the \p complex number is not zero or the real part is different from the scalar. Returns false otherwise.
*
* \param lhs The scalar.
* \param rhs The \p complex.
*/
template <typename T> __host__ __device__ inline bool operator!=(const T & lhs, const complex<T>& rhs);
/*! Returns true if the imaginary part of the \p complex number is not zero or the real part is different from the scalar. Returns false otherwise.
*
* \param lhs The \p complex.
* \param rhs The scalar.
*/
template <typename T> __host__ __device__ inline bool operator!=(const complex<T> & lhs, const T& rhs);
} // end namespace thrust
#include <thrust/detail/complex/complex.inl>
/*! \} // complex_numbers
*/
/*! \} // numerics
*/
|