This file is indexed.

/usr/share/gap/pkg/Polycyclic/gap/basic/pcpgrps.gi is in gap-polycyclic 2.11-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
#############################################################################
##
#W  pcpgrps.gi                   Polycyc                         Bettina Eick
##

#############################################################################
##
#F Create a pcp group by collector
##
## The trivial group is missing.
##
InstallGlobalFunction( PcpGroupByCollectorNC, function( coll )
    local n, l, e, f, G, rels;
    n := coll![ PC_NUMBER_OF_GENERATORS ];

    if n > 0 then
        l := IdentityMat( n );
    fi;

    e := List( [1..n], x -> PcpElementByExponentsNC( coll, l[x] ) );
    f := PcpElementByGenExpListNC( coll, [] );
    G := GroupWithGenerators( e, f );
    SetCgs( G, e );
    SetIsWholeFamily( G, true );

    if 0 in RelativeOrders( coll ) then
      SetIsFinite( G, false );
    else
      SetIsFinite( G, true );
      SetSize( G, Product( RelativeOrders( coll ) ) );
    fi;

    return G;
end );

InstallGlobalFunction( PcpGroupByCollector, function( coll )
    UpdatePolycyclicCollector( coll );
    if not IsConfluent( coll ) then
        return fail;
    else
        return PcpGroupByCollectorNC( coll );
    fi;
end );

#############################################################################
##
#F Print( <G> )
##
InstallMethod( PrintObj, "for a pcp group", [ IsPcpGroup ],
function( G )
    Print("Pcp-group with orders ",  List( Igs(G), RelativeOrderPcp ) );
end );

InstallMethod( ViewObj, "for a pcp group", [ IsPcpGroup ], SUM_FLAGS,
function( G )
    Print("Pcp-group with orders ",  List( Igs(G), RelativeOrderPcp ) );
end );

#############################################################################
##
#M Igs( <pcpgrp> )
#M Ngs( <pcpgrp> )
#M Cgs( <pcpgrp> )
##
InstallMethod( Igs, [ IsPcpGroup ],
function( G )
    if HasCgs( G ) then return Cgs(G); fi;
    if HasNgs( G ) then return Ngs(G); fi;
    return Igs( GeneratorsOfGroup(G) );
end );

InstallMethod( Ngs, [ IsPcpGroup ],
function( G )
    if HasCgs( G ) then return Cgs(G); fi;
    return Ngs( Igs( GeneratorsOfGroup(G) ) );
end );

InstallMethod( Cgs, [ IsPcpGroup ],
function( G )
    return Cgs( Igs( GeneratorsOfGroup(G) ) );
end );

#############################################################################
##
#M Membershiptest for pcp groups
##
InstallMethod( \in, "for a pcp element and a pcp group",
               IsElmsColls, [IsPcpElement, IsPcpGroup],
function( g, G )
    return ReducedByIgs( Igs(G), g ) = One(G);
end );

#############################################################################
##
#M Random( G )
##
InstallMethod( Random, "for a pcp group", [ IsPcpGroup ],
function( G )
    local pcp, rel, g, i;
    pcp := Pcp(G);
    rel := RelativeOrdersOfPcp( pcp );
    g   := [];
    for i in [1..Length(rel)] do
        if rel[i] = 0 then
            g[i] := Random( Integers );
        else
            g[i] := Random( [0..rel[i]-1] );
        fi;
    od;
    return MappedVector( g, pcp );
end );

#############################################################################
##
#M SubgroupByIgs( G, igs [, gens] )
##
## create a subgroup and set igs. If gens is given, compute pcs defined
## by <gens, pcs> and use this. Note: this function does not check if the
## generators are in G.
##
InstallGlobalFunction( SubgroupByIgs,
   function( arg )
    local U, pcs;
    if Length( arg ) = 3 then
        pcs := AddToIgs( arg[2], arg[3] );
    else
        pcs := arg[2];
    fi;
    U := SubgroupNC( Parent(arg[1]), pcs );
    SetIgs( U, pcs );
    return U;
end);

#############################################################################
##
#M SubgroupByIgsAndIgs( G, fac, nor )
##
## fac and nor are igs for a factor and a normal subgroup. This function
## computes an igs for the subgroups generated by fac and nor and sets it
## in the subgroup. This is a no-check function
##
SubgroupByIgsAndIgs := function( G, fac, nor )
    return SubgroupByIgs( G, AddIgsToIgs( fac, nor ) );
end;

#############################################################################
##
#M IsSubset for pcp groups
##
InstallMethod( IsSubset, "for pcp groups",
               IsIdenticalObj, [ IsPcpGroup, IsPcpGroup ], SUM_FLAGS,
function( H, U )
    if Parent(U) = H then return true; fi;
    return ForAll( GeneratorsOfGroup(U), x -> x in H );
end );

#############################################################################
##
#M IsNormal( H, U ) . . . . . . . . . . . . . . .test if U is normalized by H
##
InstallMethod( IsNormalOp, "for pcp groups",
               IsIdenticalObj, [ IsPcpGroup, IsPcpGroup ],
function( H, U )
    local u, h;
    for h in GeneratorsOfPcp( Pcp(H, U)) do
        for u in Igs(U) do
            if not u^h in U then return false; fi;
        od;
    od;
    return true;
end );

#############################################################################
##
#M Size( <pcpgrp> )
##
InstallMethod( Size, [ IsPcpGroup ],
function( G )
    local pcs, rel;
    pcs := Igs( G );
    rel := List( pcs, RelativeOrderPcp );
    if ForAny( rel, x -> x = 0 ) then
        return infinity;
    else
        return Product( rel );
    fi;
end );

#############################################################################
##
#M CanComputeIndex( <pcpgrp>, <pcpgrp> )
#M CanComputeSize( <pcpgrp> )
#M CanComputeSizeAnySubgroup( <pcpgrp> )
##
InstallMethod( CanComputeIndex, IsIdenticalObj, [IsPcpGroup, IsPcpGroup], ReturnTrue );
InstallTrueMethod( CanComputeSize, IsPcpGroup );
InstallTrueMethod( CanComputeSizeAnySubgroup, IsPcpGroup );

#############################################################################
##
#M IndexNC/Index( <pcpgrp>, <pcpgrp> )
##
InstallMethod( IndexNC, "for pcp groups",
               IsIdenticalObj, [IsPcpGroup, IsPcpGroup],
function( H, U )
    local pcp, rel;
    pcp := Pcp( H, U );
    rel := RelativeOrdersOfPcp( pcp );
    if ForAny( rel, x -> x = 0 ) then
        return infinity;
    else
        return Product( rel );
    fi;
end );

InstallMethod( IndexOp, "for pcp groups",
               IsIdenticalObj, [IsPcpGroup, IsPcpGroup],
function( H, U )
    if not IsSubgroup( H, U ) then
        Error("H must be contained in G");
    fi;
    return IndexNC( H, U );
end );

#############################################################################
##
#M <pcpgrp> = <pcpgrp>
##
InstallMethod( \=, "for pcp groups",
               IsIdenticalObj, [IsPcpGroup, IsPcpGroup],
function( G, H )
    return Cgs( G ) = Cgs( H );
end);

#############################################################################
##
#M ClosureGroup( <pcpgrp>, <pcpgrp> )
##
InstallMethod( ClosureGroup, "for pcp groups",
               IsIdenticalObj, [IsPcpGroup, IsPcpGroup],
function( G, H )
    local P;
    P := PcpGroupByCollectorNC( Collector(G) );
    return SubgroupByIgs( P, Igs(G), GeneratorsOfGroup(H) );
end );

#############################################################################
##
#F HirschLength( <G> )
##
InstallMethod( HirschLength, [ IsPcpGroup ],
function( G )
    local pcs, rel;
    pcs := Igs( G );
    rel := List( pcs, RelativeOrderPcp );
    return Length( Filtered( rel, x -> x = 0 ) );
end );

#############################################################################
##
#M CommutatorSubgroup( G, H )
##
InstallMethod( CommutatorSubgroup, "for pcp groups",
               IsIdenticalObj, [ IsPcpGroup, IsPcpGroup],
function( G, H )
    local pcsG, pcsH, coms, i, j, U, u;

    pcsG := Igs(G);
    pcsH := Igs(H);

    # if G = H then we need fewer commutators
    coms := [];
    if pcsG = pcsH then
        for i in [1..Length(pcsG)] do
            for j in [1..i-1] do
                Add( coms, Comm( pcsG[i], pcsH[j] ) );
            od;
        od;
        coms := Igs( coms );
        U    := SubgroupByIgs( Parent(G), coms );
    else
        for u in pcsG do
            coms := AddToIgs( coms, List( pcsH, x -> Comm( u, x ) ) );
        od;
        U    := SubgroupByIgs( Parent(G), coms );

        # In order to conjugate with fewer elements, compute <U,V>. If one is
        # normal than we do not need the normal closure, see Glasby 1987.
        if not (IsBound( G!.isNormal ) and G!.isNormal) and
           not (IsBound( H!.isNormal ) and H!.isNormal) then
            U := NormalClosure( ClosureGroup( G, H ), U );
        fi;
    fi;
    return U;
end );

#############################################################################
##
#M DerivedSubgroup( G )
##
InstallMethod( DerivedSubgroup, "for a pcp group",
               [ IsPcpGroup ], G -> CommutatorSubgroup(G, G) );

#############################################################################
##
#M PRump( G, p ). . . . . smallest normal subgroup N of G with G/N elementary
##                        abelian p-group.
##
InstallMethod( PRumpOp, "for a pcp group and a prime",
               [IsPcpGroup, IsPosInt],
function( G, p )
    local D, pcp, new;
    D := DerivedSubgroup(G);
    pcp := Pcp( G, D );
    new := List( pcp, x -> x^p );
    return SubgroupByIgs( G, Igs(D), new );
end );

#############################################################################
##
#M IsNilpotentGroup( <pcpgrp> )
##
InstallMethod( IsNilpotentGroup, "for a pcp group with known lower central series",
               [ IsPcpGroup and HasLowerCentralSeriesOfGroup ],
function( G )
    local   lcs;

    lcs := LowerCentralSeriesOfGroup( G );
    return IsTrivial( lcs[ Length(lcs) ] );
end );

InstallMethod( IsNilpotentGroup, "for a pcp group",
               [IsPcpGroup],
function( G )
    local l, U, V, pcp, n;

    l := HirschLength(G);
    U := ShallowCopy( G );

    repeat

        # take next term of lc series
        U!.isNormal := true;
        V := CommutatorSubgroup( G, U );

        # if we arrive at the trivial group
        if Size( V ) = 1 then return true; fi;

        # get quotient U/V
        pcp := Pcp( U, V );

        # if U=V then the series has terminated at a non-trivial group
        if Length( pcp ) = 0 then
            return false;
        fi;

        # get the Hirsch length of U/V
        n := Length( Filtered( RelativeOrdersOfPcp( pcp ), x -> x = 0));

        # compare it with l
        if n = 0 and l <> 0  then return false; fi;
        l := l - n;

        # iterate
        U := ShallowCopy( V );
    until false;
end );

#############################################################################
##
#M IsElementaryAbelian( <pcpgrp> )
##
InstallMethod( IsElementaryAbelian, "for a pcp group",
               [ IsPcpGroup ],
function( G )
    local rel, p;
    if not IsFinite(G) or not IsAbelian(G) then return false; fi;
    rel := List( Igs(G), RelativeOrderPcp );
    if Length(Set(rel)) > 1 then return false; fi;
    if ForAny( rel, x -> not IsPrime(x) ) then return false; fi;
    p := rel[1];
    return ForAll( RelativeOrdersOfPcp( Pcp( G, "snf" ) ), x -> x = p );
end );

#############################################################################
##
#F AbelianInvariants( <pcpgrp > )
##
InstallMethod( AbelianInvariants, "for a pcp group",
               [ IsPcpGroup ],
function( G )
    return AbelianInvariantsOfList( RelativeOrdersOfPcp( Pcp(G, DerivedSubgroup(G), "snf") ) );
end );

InstallMethod( AbelianInvariants, "for an abelian pcp group",
               [IsPcpGroup and IsAbelian],
function( G )
    return AbelianInvariantsOfList( RelativeOrdersOfPcp( Pcp(G, "snf") ) );
end );


#############################################################################
##
#M  CanEasilyComputeWithIndependentGensAbelianGroup( <pcpgrp> )
##
if IsBound(CanEasilyComputeWithIndependentGensAbelianGroup) then
# CanEasilyComputeWithIndependentGensAbelianGroup was introduced in GAP 4.5.x
InstallTrueMethod(CanEasilyComputeWithIndependentGensAbelianGroup,
    IsPcpGroup and IsAbelian);
fi;

BindGlobal( "ComputeIndependentGeneratorsOfAbelianPcpGroup", function ( G )
    local pcp, id, mat, base, ord, i, g, o, cf, j;

	# Get a pcp in Smith normal form
	if not IsBound( G!.snfpcp ) then
		pcp := Pcp(G, "snf");
		G!.snfpcp := pcp;
	else
		pcp := G!.snfpcp;
	fi;

	if IsBound( G!.indgens ) and IsBound( G!.indgenmat ) then
		return;
	fi;

	# Unfortunately, this is not *quite* what we need; in order to match
	# the Abelian invariants, we now have to further refine the generator
	# list to ensure only generators of prime power order are in the list.
	id := IdentityMat( Length(pcp) );
	mat := [];
	base := [];
	ord := [];
	for i in [1..Length(pcp)] do
		g := pcp[i];
		o := Order(g);
		if o = 1 then continue; fi;
		if o = infinity then
			Add(base, g);
			Add(mat, id[i]);
			Add(ord, 0);
			continue;
		fi;
		cf:=Collected(Factors(o));
		if Length(cf) > 1 then
			for j in cf do
				j := j[1]^j[2];
				Add(base, g^(o/j));
				Add(mat, id[i] * (j/o mod j));
				Add(ord, j);
			od;
		else
			Add(base, g);
			Add(mat, id[i]);
			Add(ord, o);
		fi;
	od;
	SortParallel(ShallowCopy(ord),base);
	SortParallel(ord,mat);

	mat := TransposedMat( mat );

	G!.indgens := base;
	G!.indgenmat := mat;
end );

#############################################################################
##
#A  IndependentGeneratorsOfAbelianGroup( <A> )
##
InstallMethod(IndependentGeneratorsOfAbelianGroup, "for an abelian pcp group",
               [IsPcpGroup and IsAbelian],
function( G )
	if not IsBound( G!.indgens ) then
		ComputeIndependentGeneratorsOfAbelianPcpGroup( G );
	fi;
	return G!.indgens;
end );


#############################################################################
##
#O  IndependentGeneratorExponents( <G>, <g> )
##
if IsBound( IndependentGeneratorExponents ) then
# IndependentGeneratorExponents was introduced in GAP 4.5.x

InstallMethod(IndependentGeneratorExponents, "for an abelian pcp group and an element",
               IsCollsElms,
               [IsPcpGroup and IsAbelian, IsPcpElement],
function( G, elm )
	local exp, rels, i;

	# Ensure everything has been set up
	if not IsBound( G!.indgenmat ) then
		ComputeIndependentGeneratorsOfAbelianPcpGroup( G );
	fi;

	# Convert elm into an exponent vector with respect to a snf pcp
	exp := ExponentsByPcp( G!.snfpcp, elm );
	rels := AbelianInvariants( G );

	# Convert the exponent vector with respect to pcp into one
	# with respect to our independent abelian generators.
	exp := exp * G!.indgenmat;
    for i in [1..Length(exp)] do
        if rels[i] > 0 then exp[i] := exp[i] mod rels[i]; fi;
    od;
	return exp;
end);

fi;

#############################################################################
##
#F NormalClosure( K, U )
##
InstallMethod( NormalClosureOp, "for pcp groups",
               IsIdenticalObj, [IsPcpGroup, IsPcpGroup],
function( K, U )
    local tmpN, newN, done, id, gensK, pcsN, k, n, c, N;

    # take initial pcs
    pcsN := ShallowCopy( Cgs(U) );
    if Length( pcsN ) = 0 then return U; fi;

    # take generating sets
    id := One( K );
    gensK := GeneratorsOfGroup(K);
    gensK := List( gensK, x -> ReducedByIgs( pcsN, x ) );
    gensK := Filtered( gensK, x -> x <> id );

    done := false;
    repeat
        done := true;
        tmpN := ShallowCopy( pcsN );
        for k in gensK do
            for n in tmpN do
                c := ReducedByIgs( pcsN, Comm( k, n ) );
                if c <> id then
                    newN := AddToIgs( pcsN, [c] );
                    if newN <> pcsN then
                        done := false;
                        pcsN := Cgs( newN );
                    fi;
                fi;
            od;
        od;
        #Print(Length(pcsN)," obtained \n");
    until done;

    # set up result
    return SubgroupByIgs( Parent(U), pcsN );
end);

#############################################################################
##
#F ExponentsByRels . . . . . . . . . . . . . . .elements written as exponents
##
ExponentsByRels := function( rel )
    local exp, idm, i, t, j, e, f;
    exp := [List( rel, x -> 0 )];
    idm := IdentityMat( Length( rel ) );
    for i in Reversed( [1..Length(rel)] ) do
        t := [];
        for j in [1..rel[i]] do
            for e in exp do
                f := ShallowCopy( e );
                f[i] := j-1;
                Add( t, f );
            od;
        od;
        exp := t;
    od;
    return exp;
end;