This file is indexed.

/usr/share/gap/pkg/guava/lib/decoders.gi is in gap-guava 3.13+ds-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
#############################################################################
##
#A  decoders.gi             GUAVA library                       Reinald Baart
#A                                                        &Jasper Cramwinckel
#A                                                           &Erik Roijackers
##                                                              &David Joyner
##  This file contains functions for decoding codes
##
## Decodeword (unrestricted) modified 11-3-2004
## Decodeword (linear) created 10-2004
## Hamming, permutation, and BCH decoders moved into this file 10-2004
## GeneralizedReedSolomonDecoderGao added 11-2004
## GeneralizedReedSolomonDecoder added 11-2004
## bug fix in GRS decoder 11-29-2004
## added GeneralizedReedSolomonListDecoder and GRS<functions>, 12-2004
## added PermutationDecodeNC, CyclicDecoder 5-2005
## revisions to Decodeword, 11-2005 (fixed bug spotted by Cayanne McFarlane)
## 1-2006: added bit flip decoder
## 7-2007: Fixed several bugs in CyclicDecoder found by 
##             Punarbasu Purkayastha <ppurka@umd.edu>
## 2009-3: Bugfix for Decodeword (J. Fields and wdj)
##


#############################################################################
##
#F  Decode( <C>, <v> )  . . . . . . . . .  decodes the vector(s) v from <C>
##
##  v can be a "codeword" or a list of "codeword"s
## 

InstallMethod(Decode, "method for unrestricted code, codeword", true, 
	[IsCode, IsCodeword], 0, 
function(C, v) 
        local c;
        if v in C then
            return Codeword(v, C);
        fi;
	c := Codeword(v, C); 
	if HasSpecialDecoder(C) then
		return InformationWord(C, SpecialDecoder(C)(C, c) );
	elif IsCyclicCode(C) or IsLinearCode(C) then 
		return Decode(C, c);
	else
		Error("no decoder present");
	fi;
end);

InstallOtherMethod(Decode, 
	"method for unrestricted code, list of codewords", 
	true, [IsCode, IsList], 0, 
function(C, L) 
        local i;
	return List(L, i->Decode(C, i)); 
end); 

InstallMethod(Decode, "method for linear code, codeword", true, 
	[IsLinearCode, IsCodeword], 0, 
function(C, v) 
    local ok, c, S, syn, index, corr, Gt, i, x, F;
    if v in C then
        return InformationWord(C,v);
    fi;
    c := Codeword(v, C); 
    if HasSpecialDecoder(C) then 
	return InformationWord(C, SpecialDecoder(C)(C, c) ); 
    fi; 
    F := LeftActingDomain(C);
    S := SyndromeTable(C);
    syn := Syndrome(C, c);
    ok := false;
    for index in [1..Length(S)] do
        if IsBound(S[index]) and S[index][2] = syn then
           ok := true;
           break;
        fi;
    od;
    if not ok then  # this should never happen!
       Error("In Decodeword: index not found");
    fi;
#This is a hack.  The subtraction operation for codewords is causing an error
#and rather than trying to understand the method selection process, I'm brute-
#forcing things...

#    corr := VectorCodeword(c - S[index][1]);	     # correct codeword
    corr := VectorCodeword(c) - VectorCodeword(S[index][1]); 
    x := SolutionMat(GeneratorMat(C), corr);
    return Codeword(x,LeftActingDomain(C));	     # correct "message"
end);



#############################################################################
##
#F  Decodeword( <C>, <v> )  . . . . . . .  decodes the vector(s) v from <C>
##
##  v can be a "codeword" or a list of "codeword"s
## 

#nearest neighbor
InstallMethod(Decodeword, "method for unrestricted code, codeword", true, 
	[IsCode, IsCodeword], 0, 
function(C, v) 
        local r, c, Cwords, NearbyWords, dist;
        if v in C then
            return v;
        fi;
	r := Codeword(v, C); 
        if r in C then return r; fi;
	if HasSpecialDecoder(C) then
		return SpecialDecoder(C)(C, r);
	elif IsCyclicCode(C) or IsLinearCode(C) then 
		return Decodeword(C, r);
	else
	     dist:=Int((MinimumDistance(C)-1)/2);
             Cwords:=Elements(C);
             NearbyWords:=[];
             for c in Cwords do
               if WeightCodeword(r-c) <= dist then
                   NearbyWords:=Concatenation(NearbyWords,[r]); 
               fi;
             od;
             return NearbyWords;	
	fi;
end);


InstallOtherMethod(Decodeword, 
	"method for unrestricted code, list of codewords", 
	true, [IsCode, IsList], 0, 
function(C, L) 
        local i;
	return List(L, i->Decodeword(C, i)); 
end); 

#syndrome decoding
InstallMethod(Decodeword, "method for linear code, codeword", true, 
	[IsLinearCode, IsCodeword], 0, 
function(C, v) 
    local ok, c, c0, S, syn, index, corr, Gt, i, x, F;
    if v in C then
        return v;
    fi;
    c := Codeword(v, C); 
    if HasSpecialDecoder(C) then 
                c0:=SpecialDecoder(C)(C, c); 
		if Size(c0) = Dimension(C) then
                    return Codeword(c0*C);
                fi;
		if Size(c0) = Size(c) then
                    return Codeword(c0);
                fi;
                return c0;
    fi; 
    F := LeftActingDomain(C);
    S := SyndromeTable(C);
    syn := Syndrome(C, c);
    ok := false;
    for index in [1..Length(S)] do
        if IsBound(S[index]) and S[index][2] = syn then
           ok := true;
           break;
        fi;
    od;
    if not ok then  # this should never happen!
       Error("In Decodeword: index not found");
    fi;
    corr := VectorCodeword(c - S[index][1]);	     # correct codeword
    return Codeword(corr,F);
end);


##################################################################
##
##  PermutationDecode( <C>, <v> ) -  decodes the vector v  to <C>
##
##   Uses Leon's AutomorphismGroup in the binary case,
##   PermutationAutomorphismGroup in the non-binary case,
##   performs permutation decoding when possible.
##   Returns original vector and prints "fail" when not possible.
##

InstallMethod(PermutationDecode, "attribute method for linear codes", true, 
	[IsLinearCode,IsList], 0, 
function(C,v)
 #C is a linear [n,k,d] code,
 #v is a vector with <=(d-1)/2 errors
local M,G,perm,F,P,t,p0,p,pc,i,k,pv,c,H,d,G0,H0;
 G:=GeneratorMat(C);
 H:=CheckMat(C);
 d:=MinimumDistance(C);
 k:=Dimension(C);
 G0 := List(G, ShallowCopy);
 perm:=PutStandardForm(G0);
 H0 := List(H, ShallowCopy);
 PutStandardForm(H0,false);
 F:=LeftActingDomain(C);
 if F=GF(2) then 
   P:=AutomorphismGroup(C);
  else
   P:=PermutationAutomorphismGroup(C);
 fi;
 t:=Int((d-1)/2);
 p0:=0;
 if WeightCodeword(H0*v)=0 then return(v); fi;
 for p in P do
  pv:=Permuted(v,p);
  if WeightCodeword(Codeword(H0*pv))<=t then 
	p0:=p; 
	break; 
  fi;
 od;
 if p0=0 then Print("fail \n"); return(v); fi;
 pc:=TransposedMat(G0)*List([1..k],i->pv[i]);
 c:=Permuted(pc,p0^(-1));
 return Codeword(Permuted(c,perm));
end);


##################################################################
##
##
##  PermutationDecodeNC( <C>, <v>, <P> ) -  decodes the 
##                                vector v  to <C>
##
##   Performs permutation decoding when possible.
##   Returns original vector and prints "fail" when not possible.
##   NC version does Not Compute the aut gp so one must
##   input the permutation automorphism group  
##   <P> subset SymmGp(n), n=wordlength(<C>)
##
####  wdj,2-7-2005

InstallMethod(PermutationDecodeNC, "attribute method for linear codes", true, 
	[IsLinearCode,IsCodeword,IsGroup], 0, 
function(C,v,P)
 #C is a linear [n,k,d] code,
 #v is a vector with <=(d-1)/2 errors
local M,G,G0, perm,F,t,p0,p,pc,i,k,pv,c,H,H0, d;
 G:=GeneratorMat(C);
 H:=CheckMat(C);
 d:=MinimumDistance(C);
 k:=Dimension(C);
 G0 := List(G, ShallowCopy);
 perm:=PutStandardForm(G0);
 H0 := List(H, ShallowCopy);
 PutStandardForm(H0,false);
 F:=LeftActingDomain(C);
 t:=Int((d-1)/2);
 p0:=0;
 if WeightCodeword(H0*v)=0 then return(v); fi;
 for p in P do
  pv:=Permuted(v,p);
  if WeightCodeword(Codeword(H0*pv))<=t then 
	p0:=p; 
#	Print(p0," = p0 \n",pv,"\n",H*pv,"\n"); 
	break; 
  fi;
 od;
 if p0=0 then Print("fail \n"); return(v); fi;
 pc:=TransposedMat(G0)*List([1..k],i->pv[i]);
 c:=Permuted(pc,p0^(-1));
 return Codeword(Permuted(c,perm));
end);

#############################################################################
##
#F  CyclicDecoder( <C>, <w> )  . . . . . . . . . . . . decodes cyclic codes
##
InstallMethod(CyclicDecoder, "method for cyclic code, codeword", true, 
	[IsCode, IsCodeword], 0, 
function(C,w)
local d, g, wpol, s, ds, cpol, cc, c, i, m, e, x, n, ccc, r;
 if not(IsCyclicCode(C)) then
   Error("\n\n Code must be cyclic");
 fi;
 if Codeword(w) in C then return Codeword(w); fi; ## bug fix 7-6-2007
 n:=WordLength(C);
 d:=MinimumDistance(C);
 g:=GeneratorPol(C);
 x:=IndeterminateOfUnivariateRationalFunction(g);
 wpol:=PolyCodeword(w);
 s:=wpol mod g;
 ds:=DegreeOfLaurentPolynomial(s);
 if ds<=Int((d-1)/2) then
   cpol:=wpol-s;
   cc:=CoefficientsOfUnivariatePolynomial(cpol);
   r:=Length(cc);
   ccc:=Concatenation(cc,List([1..(n-r)],k->0*cc[1]));
   c:=Codeword(ccc);
   #return InformationWord( C, c );
   return c;
 fi;
 for i in [1..(n-1)] do
   s:=x^i*wpol mod g;
   ds:=DegreeOfLaurentPolynomial(s);
   if ds<=Int((d-1)/2) then
     m:=i;
     e:=x^(n-m)*s mod (x^n-1);
     cpol:=wpol-e;
     cc:=CoefficientsOfUnivariatePolynomial(cpol);
     r:=Length(cc);
     ccc:=Concatenation(cc,List([1..(n-r)],k->0*cc[1]));
     c:=Codeword(ccc);
     #return InformationWord( C, c );
     return c;
   fi;
 od;
 return "fail";
end);

#############################################################################
##
#F  BCHDecoder( <C>, <r> )  . . . . . . . . . . . . . . . . decodes BCH codes
##
InstallMethod(BCHDecoder, "method for code, codeword", true, 
	[IsCode, IsCodeword], 0, 
function (C, r)
    local F, q, n, m, ExtF, x, a, t, ri_1, ri, rnew, si_1, si, snew,
          ti_1, ti, qi, sigma, i, cc, cl, mp, ErrorLocator, zero,
          Syndromes, null, pol, ExtSize, ErrorEvaluator, Fp;
    F := LeftActingDomain(C);
    q := Size(F);
    n := WordLength(C);
    m := OrderMod(q,n);
    t := QuoInt(DesignedDistance(C) - 1, 2);
    ExtF := GF(q^m);
    x := Indeterminate(ExtF);
    a := PrimitiveUnityRoot(q,n);
    zero := Zero(ExtF); 
    r := PolyCodeword(Codeword(r, n, F));
    if Value(GeneratorPol(C), a) <> zero then
        return Decode(C, r);  ##LR - inf loop !!! 
    fi;
    # Calculate syndrome: this simple line is faster than using minimal pols.
    Syndromes :=  List([1..2*QuoInt(DesignedDistance(C) - 1,2)],
                       i->Value(r, a^i));
    if Maximum(Syndromes) = Zero(F) then # no errors
        return Codeword(r mod (x^n-1), C);
    fi;
    # Use Euclidean algorithm:
    ri_1 := x^(2*t); 
	ri := LaurentPolynomialByCoefficients( 
			ElementsFamily(FamilyObj(ExtF)), 
			Syndromes, 0); 
	rnew := ShallowCopy(ri);
    si_1 := x^0; si := 0*x; snew := 0*x;
    ti_1 := 0*x; ti := x^0; sigma := x^0;
    while Degree(rnew) >= t do
        rnew := (ri_1 mod ri);
        qi := (ri_1 - rnew) / ri;
        snew := si_1 - qi*si;
        sigma := ti_1 - qi*ti;
        ri_1 := ri; ri := rnew;
        si_1 := si; si := snew;
        ti_1 := ti; ti := sigma;
    od;
    # Chien search for the zeros of error locator polynomial:
    ErrorLocator := []; 
    null := a^0;
    ExtSize := q^m-1;
    for i in [0..ExtSize-1] do
        if Value(sigma, null) = zero then
            AddSet(ErrorLocator, (ExtSize-i) mod n);
        fi;
        null := null * a;
    od;
    # And decode:
    if Length(ErrorLocator) = 0 then
        Error("not decodable");
    fi;
    x := Indeterminate(F);
    if q = 2 then # error locator is not necessary
        pol := Sum(List([1..Length(ErrorLocator)], i->x^ErrorLocator[i]));
        return Codeword((r - pol) mod (x^n-1), C);
    else
        pol := Derivative(sigma);
        Fp := One(F)*(x^n-1);
        ErrorEvaluator := List(ErrorLocator,i->
                              Value(rnew,a^-i)/Value(pol, a^-i));
        pol := Sum(List([1..Length(ErrorLocator)], i->
                       -ErrorEvaluator[i]*x^ErrorLocator[i]));
        return  Codeword((r - pol) mod (x^n-1) , C);
    fi;
end);

#############################################################################
##
#F  HammingDecoder( <C>, <r> )  . . . . . . . . . . . . decodes Hamming codes
##
##  Generator matrix must have all unit columns
## 
InstallMethod(HammingDecoder, "method for code, codeword", true, 
	[IsCode, IsCodeword], 0, 
function(C, r) 
    local H, S,p, F, fac, e,z,x,ind, i,Sf;
    S := VectorCodeword(Syndrome(C,r));
    r := ShallowCopy(VectorCodeword(r));
    F := LeftActingDomain(C);
    p := PositionProperty(S, s->s<>Zero(F)); 
    if p <> fail then
        z := Z(Characteristic(S[p]))^0;
        if z = S[p] then
            fac := One(F); 
        else
            fac := S[p]/z;
        fi;
        Sf := S/fac;
        H := CheckMat(C);
        ind := [1..WordLength(C)];
        for i in [1..Redundancy(C)] do
            ind := Filtered(ind, j-> H[i][j] = Sf[i]);
        od;
        e := ind[1];
        r[e] := r[e]-fac;     # correct error
    fi;
    #x := SolutionMat(GeneratorMat(C), r);
    #return Codeword(x);
    return Codeword(r, C);
end);	

#############################################################################
##
#F  GeneralizedReedSolomonDecoderGao( <C>, <v> )   . . decodes 
##                                           generalized Reed-Solomon codes
##                                           using S. Gao's method
## 
InstallMethod(GeneralizedReedSolomonDecoderGao,"method for code, codeword", true, 
	[IsCode, IsCodeword], 0, 
function(C,vec)
 local vars,a,b,n,i,g0,g1,geea,u,q,v,r,g,f,F,R,x,k,GcdExtEuclideanUntilBound; 
 if C!.name<>" generalized Reed-Solomon code" then
   Error("\N This method only applies to GRS codes.\n");
 fi;

GcdExtEuclideanUntilBound:=function(F,f,g,d,R)
## S Gao's version
## R is a poly ring
local vars,u,v,r,q,i,num,x;
 vars:=IndeterminatesOfPolynomialRing(R);
 x:=vars[1]; # define local x
 u:=List([1..3],i->Zero(F)); ## Need u[3] as a temporary variable
 v:=List([1..3],i->Zero(F));
 r:=List([1..3],i->Zero(F));
 q:=Zero(F);
 u[1]:=One(F); u[2]:=Zero(F); v[1]:=Zero(F); v[2]:=One(F);
 r[2]:=f; r[1]:=g;           ### applied with r2=f=g1, r1=g=g0
 while DegreeIndeterminate(r[2],x)> d-1 do    ### assume Degree(0) < 0.
  q   := EuclideanQuotient(R,r[1],r[2]);
  r[3]:=EuclideanRemainder(R,r[1],r[2]);
  u[3]:=u[1] - q*u[2];
  v[3]:=v[1] - q*v[2];
  r[1]:=r[2]; r[2] :=r[3];
  u[1]:=u[2]; u[2] :=u[3];
  v[1]:=v[2]; v[2] :=v[3];
 od;
 return([r[2],u[2],v[2]]);
end;

 a:=C!.points;
 R:=C!.ring;
 k:=C!.degree;
 F:=CoefficientsRing(R);
 b:=VectorCodeword(vec);
 vars:=IndeterminatesOfPolynomialRing(R);
 x:=vars[1]; # define local x
 n:=Length(a);
 if Size(Set(a)) < n then    
   Error("`Points in 1st vector must be distinct.`\n\n");  
 fi;
 g0:=One(F)*Product([1..n],i->x-a[i]);
 g1:=InterpolatedPolynomial(F,a,b);
 geea:=GcdExtEuclideanUntilBound(F,g1,g0,(n+k)/2,R);
 u:=geea[2]; v:=geea[3]; g:=geea[1];
 if v=Zero(F) then return("fail"); fi;   
 if v=One(F) then 
     q:=g; 
     r:=Zero(F); 
   else 
     q:=EuclideanQuotient(R,g,v);  
     r:=EuclideanRemainder(R,g,v);
 fi;
 if ((r=Zero(F) or LeadingCoefficient(r)=Zero(F)) and (Degree(q) < k)) then
     f:=q;
   else
     f:="fail";  ## this does not occur if num errors < (mindist - 1)/2
 fi;
 if f="fail" then return(f); else
    return Codeword(List(a,i->Value(f,i)),C);
 fi;
end);

##########################################################
#
# Input: Pts=[x1,..,xn], l = highest power,
#       L=[h_1,...,h_ell] is list of powers
#       r=[r1,...,rn] is received vector
# Output: Computes matrix described in Algor. 12.1.1 in [JH]
#
GRSLocatorMat:=function(r,Pts,L)
  local a,j,b,ell,DiagonalPower,add_col_mat,add_row_mat,block_matrix;

 add_col_mat:=function(M,N) ## "AddColumnsToMatrix"
  #N is a matrix with same rowdim as M 
  #the fcn adjoins N to the end of M
  local i,j,S,col,NT;
  col:=MutableTransposedMat(M);  #preserves M
  NT:=MutableTransposedMat(N);   #preserves N
  for j in [1..DimensionsMat(N)[2]] do
      Add(col,NT[j]);
  od;
  return MutableTransposedMat(col);
 end;

 add_row_mat:=function(M,N) ## "AddRowsToMatrix"
  #N is a matrix with same coldim as M 
  #the fcn adjoins N to the bottom of M
  local i,j,S,row;
  row:=ShallowCopy(M);#to preserve M;
  for j in [1..DimensionsMat(N)[1]] do
    Add(row,N[j]);
  od;
  return row;
 end;

 block_matrix:=function(L) ## slightly simpler syntax IMHO than "BlockMatrix"
  # L is an array of matrices of the form
  # [[M1,...,Ma],[N1,...,Na],...,[P1,...,Pa]]
  # returns the associated block matrix 
  local A,B,i,j,m,n;
  n:=Length(L[1]);
  m:=Length(L);
  A:=[];
  if n=1 then
     if m=1 then return L[1][1]; fi;
     A:=L[1][1];
     for i in [2..m] do
         A:=add_row_mat(A,L[i][1]);
     od;
     return A;
  fi;
  for j in [1..m] do
    A[j]:=L[j][1];
  od;
  for j in [1..m] do
   for i in [2..n] do
    A[j]:=add_col_mat(A[j],L[j][i]);
   od;
  od;
  B:=A[1];
  for j in [2..m] do
   B:= add_row_mat(B,A[j]);
  od;
  return B;
 end;

 DiagonalPower:=function(r,j)
  local R,n,i;
  n:=Length(r);
  R:=DiagonalMat(List([1..n],i->r[i]^j));
  return R;
 end;

  ell:=Length(L);
  a:=List([1..ell],j->DiagonalPower(r,(j-1))*VandermondeMat(Pts,L[j]));
  b:=List([1..ell],j->[1,j,a[j]]);
  return (block_matrix([a]));  
end; 

##############################################################
#
#
# Input: Pts=[x1,..,xn], 
#       L=[h_1,...,h_ell] is list of powers
#       r=[r1,...,rn] is received vector
#
# Compute kernel of matrix in alg 12.1.1 in [JH].
# Choose a basis vector in kernel.  
# Output: the lists of coefficients of the polynomial Q(x,y) in alg 12.1.1.  
#
GRSErrorLocatorCoeffs:=function(r,Pts,L)
  local a,j,b,vec,e,QC,i,lengths,ker,ell;
  ell:=Length(L); 
  e:=GRSLocatorMat(r,Pts,L);
  ker:=TriangulizedNullspaceMat(TransposedMat(e));
  if ker=[] then Print("Decoding fails.\n"); return []; fi;
  vec:=ker[Length(ker)];
  QC:=[];
  lengths:=List([1..ell],i->Sum(List([1..i],j->1+L[j])));
  QC[1]:=List([1..lengths[1]],j->vec[j]);
  for i in [2..ell] do
  QC[i]:=List([(lengths[i-1]+1)..lengths[i]],j->vec[j]);
  od;
  return QC;
end;


#######################################################
#
# Input: List L of coefficients ell, R = F[x]
#        Pts=[x1,..,xn], 
# Output: list of polynomials Qi as in Algor. 12.1.1 in [JH]
# 
GRSErrorLocatorPolynomials:=function(r,Pts,L,R)
  local q,p,i,ell;
  ell:=Length(L)+1; ##  ?? Length(L) instead ??
  q:=GRSErrorLocatorCoeffs(r,Pts,L);
  if q=[] then Print("Decoding fails.\n"); return []; fi;
  p:=[];
  for i in [1..Length(q)] do 
     p:=Concatenation(p,[CoefficientToPolynomial(q[i],R)]);
  od;
  return p;
end;

##########################################################
#
# Input: List L of coefficients ell, R = F[x]
#       Pts=[x1,..,xn], 
# Output: interpolating polynomial Q as in Algor. 12.1.1 in [JH]
# 
GRSInterpolatingPolynomial:=function(r,Pts,L,R)
  local poly,i,Ry,F,y,Q,ell;
  ell:=Length(L)+1; ##  ?? Length(L) instead ??  ##### not used ???
Q:=GRSErrorLocatorPolynomials(r,Pts,L,R);
  if Q=[] then Print("Decoding fails.\n"); return 0; fi;
  F:=CoefficientsRing(R);
  y:=IndeterminatesOfPolynomialRing(R)[2];
# Ry:=PolynomialRing(F,[y]);
# poly:=CoefficientToPolynomial(Q,Ry);
  poly:=Sum(List([1..Length(Q)],i->Q[i]*y^(i-1)));
  return poly;
end;

#############################################################################
##
#F  GeneralizedReedSolomonDecoder( <C>, <v> )   . . decodes 
##                                           generalized Reed-Solomon codes
##                                           using the interpolation algorithm
## 
InstallMethod(GeneralizedReedSolomonDecoder,"method for code, codeword", true, 
	[IsCode, IsCodeword], 0, 
function(C,vec)
local v,R,k,P,z,F,f,s,t,L,n,Qpolys,vars,x,c,y;

 v:=VectorCodeword(vec);
 R:=C!.ring;
 P:=C!.points;
 k:=C!.degree;
 F:=CoefficientsRing(R);
 vars:=IndeterminatesOfPolynomialRing(R);
 x:=vars[1];
#y:=vars[2];
 n:=Length(v);
 t:=Int((n-k)/2);
 L:=[n-1-t,n-t-k];
 Qpolys:=GRSErrorLocatorPolynomials(v,P,L,R);
 f:=-Qpolys[2]/Qpolys[1];
 c:=List(P,s->Value(f,[x],[s]));
 return Codeword(c,n,F);
end);


#############################################################################
##
#F  GeneralizedReedSolomonListDecoder( <C>, <v> , <ell> )   . . ell-list decodes 
##                                           generalized Reed-Solomon codes
##                                           using M. Sudan's algorithm
## 
##
## Input: v is a received vector (a GUAVA codeword)
##        C is a GRS code
##        ell>0 is the length of the decoded list (should be at least
##                  2 to beat GeneralizedReedSolomonDecoder
##                  or Decoder with the special method of interpolation decoding)
##
InstallMethod(GeneralizedReedSolomonListDecoder,"method for code, codeword, integer", 
    true, [IsCode, IsCodeword, IsInt], 0, 
function(C,v,ell)
local f,h,g,x,R,R2,L,F,t,i,c,Pts,k,n,tau,Q,divisorsf,div,
      CodewordList,p,vars,y,degy, divisorsdeg1;
 R:=C!.ring;
 F:=CoefficientsRing(R);
 vars:=IndeterminatesOfPolynomialRing(R);
 x:=vars[1]; 
 Pts:=C!.points;
 n:=Length(Pts);
 k:=C!.degree; 
 tau:=Int((n-k)/2);
 L:=List([0..ell],i->n-tau-1-i*(k-1));
 y:=X(F,vars);;
 R2:=PolynomialRing(F,[x,y]);
 vars:=IndeterminatesOfPolynomialRing(R2);
 Q:=GRSInterpolatingPolynomial(v,Pts,L,R2); 
 divisorsf:=DivisorsMultivariatePolynomial(Q,R2);
 divisorsdeg1:=[];
 CodewordList:=[];
 for div in divisorsf do
  degy:=DegreeIndeterminate(div,y);
  if degy=1 then ######### div=h*y+g
    g:=Value(div,vars,[x,Zero(F)]);
    h:=Derivative(div,y);
   if DegreeIndeterminate(h,x)=0 then
      f:= -h^(-1)*g*y^0;
      divisorsdeg1:=Concatenation(divisorsdeg1,[f]);
    if g=Zero(F)*x then
       c:=List(Pts,p->Zero(F));
     else
       c:=List(Pts,p->Value(f,[x,y],[p,Zero(F)]));
    fi;
    CodewordList:=Concatenation(CodewordList,[Codeword(c,C)]);
   fi;
  fi;
 od;
 return CodewordList;
end);

#############################################################################
##
#F  NearestNeighborGRSDecodewords( <C>, <v> , <dist> )   . . . finds all 
##                                           generalized Reed-Solomon codewords
##                                           within distance <dist> from v
##                                           *and* the associated polynomial,
##                                           using "brute force"
##
## Input: v is a received vector (a GUAVA codeword)
##        C is a GRS code
##        dist>0 is the distance from v to search
## Output: a list of pairs [c,f(x)], where wt(c-v)<dist
##         and c = (f(x1),...,f(xn))
##
## ****** very slow*****
##
InstallMethod(NearestNeighborGRSDecodewords,"method for code, codeword, integer", 
    true, [IsCode, IsCodeword, IsInt], 0, 
function(C,r,dist)
# "brute force" decoder
local k,F,Pts,v,p,x,f,NearbyWords,c,a;
 k:=C!.degree;
 Pts:=C!.points;
 F:=LeftActingDomain(C);
 NearbyWords:=[];
 for v in F^k do
   a := Codeword(v); 
   f:=PolyCodeword(a);
   x:=IndeterminateOfLaurentPolynomial(f);
   c:=Codeword(List(Pts,p->Value(f,[x],[p])));
   if WeightCodeword(r-c) <= dist then
   NearbyWords:=Concatenation(NearbyWords,[[c,f]]); 
 fi;
od;
return NearbyWords;
end);

#############################################################################
##
#F  NearestNeighborDecodewords( <C>, <v> , <dist> )   . . . finds all 
##                                           codewords in a linear code C 
##                                           within distance <dist> from v
##                                           using "brute force"
##
## Input: v is a received vector (a GUAVA codeword)
##        C is a linear code
##        dist>0 is the distance from v to search
## Output: a list of c in C, where wt(c-v)<dist
##
## ****** very slow*****
##
InstallMethod(NearestNeighborDecodewords,"method for code, codeword, integer", 
    true, [IsCode, IsCodeword, IsInt], 0, 
function(C,r,dist)
# "brute force" decoder
local k,F,Pts,v,p,x,f,NearbyWords,c,a;
 F:=LeftActingDomain(C);
 NearbyWords:=[];
 for v in C do
   c := Codeword(v); 
   if WeightCodeword(r-c) <= dist then
   NearbyWords:=Concatenation(NearbyWords,[c]); 
 fi;
od;
return NearbyWords;
end);


#############################################################################
##
#F  BitFlipDecoder( <C>, <v>  )   . . . decodes *binary* LDPC codes using bit-flipping
##                                                           or Gallager hard-decision
##               ** often fails to work if C is not LDPC **
##
## Input: v is a received vector (a GUAVA codeword)
##        C is a binary LDPC code
## Output: a c in C, where wt(c-v)<mindis(C)
##
## ****** fast *****
##
checksetJ:=function(H,w)
 local i,I,n,k;
 I:=[];
 n:=Length(H[1]);
 for i in [1..n] do
		if H[w][i]<>0*Z(2) then 
		I:=Concatenation(I,[i]);
		fi;
	od;
 return I;
end;

checksetI:=function(H,u)
 return checksetJ(TransposedMat(H),u);
end;

BFcounter:=function(I,s)
 local S,i;
 S:=Codeword(List(I, i -> List(s)[i]));
 return WeightCodeword(S);
end;

bit_flip:=function(H,v)
 local i,j,s,q,n,k,rho,gamma,I_j,tH;
 tH:=TransposedMat(H);
 q:=ShallowCopy(v);
 s:=H*q;
 n:=Length(H[1]);
 k:=n-Length(H);
 rho:=Length(Support(Codeword(H[1])));
 #gamma:= Length(Support(Codeword(TransposedMat(H)[1])));
 for j in [1..n] do
   gamma:= Length(Support(Codeword(tH[j])));
   I_j:=checksetI(H,j);
       if BFcounter(I_j,s)>gamma/2 then
           q[j]:=q[j]+Z(2);
           break;
       fi;
 od;
 return Codeword(q);
end;

InstallMethod(BitFlipDecoder,"method for code, codeword, integer", 
    true, [IsCode, IsCodeword], 0, 
function(C,v)
 local H,r,qnew,q;
 H:=CheckMat(C);
 r:=ShallowCopy(v);
 if Length(Support(Codeword(H*v)))=0 then
        return v;
 fi;
 q:=bit_flip(H,r);
 if Length(Support(Codeword(H*q)))=0 then
        return Codeword(q);
 fi;
 while Length(Support(Codeword(H*q)))<Length(Support(Codeword(H*r))) do
 #while q<>r do
   qnew:=q;
   r:=q;
   q:=bit_flip(H,qnew);
   Print("  ",Length(Support(Codeword(H*q))),"  ",Length(Support(Codeword(H*r))),"\n");
 od;
 return Codeword(r);
end);