This file is indexed.

/usr/share/gap/pkg/guava/doc/chap7.html is in gap-guava 3.13+ds-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (guava) - Chapter 7: 
Bounds on codes, special matrices and miscellaneous functions
</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap7"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap6.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap8.html">[Next Chapter]</a>&nbsp;  </div>

<p><a id="X7A814D518460862E" name="X7A814D518460862E"></a></p>
<div class="ChapSects"><a href="chap7.html#X7A814D518460862E">7 <span class="Heading">
Bounds on codes, special matrices and miscellaneous functions
</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7.html#X87C753EB840C34D3">7.1 <span class="Heading">
Distance bounds on codes
</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X8673277C7F6C04C3">7.1-1 UpperBoundSingleton</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X828095537C91FDFA">7.1-2 UpperBoundHamming</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X82EBFAAB7F5BFD4A">7.1-3 UpperBoundJohnson</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7A26E2537DFF4409">7.1-4 UpperBoundPlotkin</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X86A5A7C67F625A40">7.1-5 UpperBoundElias</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X82366C277E218130">7.1-6 UpperBoundGriesmer</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X8301FA9F7C6C7445">7.1-7 IsGriesmerCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7A5CB74485184FEE">7.1-8 UpperBound</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7FDF54BA81115D88">7.1-9 LowerBoundMinimumDistance</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7CF15D2084499869">7.1-10 LowerBoundGilbertVarshamov</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X8217D830871286D8">7.1-11 LowerBoundSpherePacking</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7C6A58327BD6B685">7.1-12 UpperBoundMinimumDistance</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7B3858B27A9E509A">7.1-13 BoundsMinimumDistance</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7.html#X817D0A647D3331EB">7.2 <span class="Heading">
Covering radius bounds on codes
</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X8320D1C180A1AAAD">7.2-1 BoundsCoveringRadius</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7881E03E812140F4">7.2-2 IncreaseCoveringRadiusLowerBound</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7AD9F1D27C52BC0F">7.2-3 ExhaustiveSearchCoveringRadius</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X85D671F4824B4B0C">7.2-4 GeneralLowerBoundCoveringRadius</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X8638F5A67D6E50C1">7.2-5 GeneralUpperBoundCoveringRadius</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7E7FBCC87D5562AB">7.2-6 LowerBoundCoveringRadiusSphereCovering</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X85E20C518360AB70">7.2-7 LowerBoundCoveringRadiusVanWee1</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7C72994A825228E7">7.2-8 LowerBoundCoveringRadiusVanWee2</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7F95362485759ACB">7.2-9 LowerBoundCoveringRadiusCountingExcess</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X829C14A383B5BF59">7.2-10 LowerBoundCoveringRadiusEmbedded1</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7B0C81B88604C448">7.2-11 LowerBoundCoveringRadiusEmbedded2</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7D27F6E27B9A0D35">7.2-12 LowerBoundCoveringRadiusInduction</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X80F8DFAD7D67CBEC">7.2-13 UpperBoundCoveringRadiusRedundancy</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X832847A17FD0D142">7.2-14 UpperBoundCoveringRadiusDelsarte</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X86F10D9E79AB8796">7.2-15 UpperBoundCoveringRadiusStrength</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X8585C6A982489FC3">7.2-16 UpperBoundCoveringRadiusGriesmerLike</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X82A38F5F858CF3FC">7.2-17 UpperBoundCoveringRadiusCyclicCode</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7.html#X84F9246D84B9947A">7.3 <span class="Heading">
Special matrices in <strong class="pkg">GUAVA</strong>
</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X82899B64802A4BCE">7.3-1 KrawtchoukMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X87AFE2C078031CE4">7.3-2 GrayMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7E1E7C5287919CDB">7.3-3 SylvesterMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X8014A1F181ECD8AA">7.3-4 HadamardMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X797F43607AD8660D">7.3-5 VandermondeMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7B47D82485B66F1D">7.3-6 PutStandardForm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7D4EDA0A854EBFEF">7.3-7 IsInStandardForm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7A97AD477E7638DE">7.3-8 PermutedCols</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7B68119F85E9EC6D">7.3-9 VerticalConversionFieldMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X8033E9A67BA155C8">7.3-10 HorizontalConversionFieldMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X804AAFF2867080F7">7.3-11 MOLS</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7F34306B81DC2776">7.3-12 IsLatinSquare</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X81B9B40B7B2D97D5">7.3-13 AreMOLS</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7.html#X7AB5E5CE7FDF7132">7.4 <span class="Heading">
Some functions related to the norm of a code
</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X8032E53078264ABB">7.4-1 CoordinateNorm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7ED2EF368203AF47">7.4-2 CodeNorm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7D24F8BF7F9A7BF1">7.4-3 IsCoordinateAcceptable</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X87039FD179AD3009">7.4-4 GeneralizedCodeNorm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X80283A2F7C8101BD">7.4-5 IsNormalCode</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7.html#X8308D685809A4E2F">7.5 <span class="Heading">
Miscellaneous functions
</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X871286437DE7A6A4">7.5-1 CodeWeightEnumerator</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X84DA928083B103A0">7.5-2 CodeDistanceEnumerator</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X84B2BE66780EFBF9">7.5-3 CodeMacWilliamsTransform</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7903286078F8051B">7.5-4 CodeDensity</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X85303BAE7BD46D81">7.5-5 SphereContent</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7ACDC5377CD17451">7.5-6 Krawtchouk</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X827E39957A87EB51">7.5-7 PrimitiveUnityRoot</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X78AEA40F7AD9D541">7.5-8 PrimitivePolynomialsNr</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7A2B54EF868AA752">7.5-9 IrreduciblePolynomialsNr</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7B50D3417F6FD7C6">7.5-10 MatrixRepresentationOfElement</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7805D2BB7CE4D455">7.5-11 ReciprocalPolynomial</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7AEA9F807E6FFEFF">7.5-12 CyclotomicCosets</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7A4EA98D794CF410">7.5-13 WeightHistogram</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X805DF25C84585FD6">7.5-14 MultiplicityInList</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X8072B0DA78FBE562">7.5-15 MostCommonInList</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7C5407EF87849857">7.5-16 RotateList</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X85E526367878F72A">7.5-17 CirculantMatrix</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7.html#X7969103F7A8598F9">7.6 <span class="Heading">
Miscellaneous polynomial functions
</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X84D51EBB784E7C5D">7.6-1 MatrixTransformationOnMultivariatePolynomial </a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X80433A4B792880EF">7.6-2 DegreeMultivariatePolynomial</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X83F44E397C56F2E0">7.6-3 DegreesMultivariatePolynomial</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7E9021697A61A60F">7.6-4 CoefficientMultivariatePolynomial</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X79E76B6F7D177E27">7.6-5 SolveLinearSystem</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X80171AA687FFDC70">7.6-6 GuavaVersion</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7EBBE86D85CC90C0">7.6-7 ZechLog</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7C8C1E6A7E3497F0">7.6-8 CoefficientToPolynomial</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X8431985183B63BB7">7.6-9 DegreesMonomialTerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X860EF39B841380A1">7.6-10 DivisorsMultivariatePolynomial</a></span>
</div></div>
</div>

<h3>7 <span class="Heading">
Bounds on codes, special matrices and miscellaneous functions
</span></h3>

<p>In this chapter we describe functions that determine bounds on the size and minimum distance of codes (Section <a href="chap7.html#X87C753EB840C34D3"><span class="RefLink">7.1</span></a>), functions that determine bounds on the size and covering radius of codes (Section <a href="chap7.html#X817D0A647D3331EB"><span class="RefLink">7.2</span></a>), functions that work with special matrices <strong class="pkg">GUAVA</strong> needs for several codes (see Section <a href="chap7.html#X84F9246D84B9947A"><span class="RefLink">7.3</span></a>), and constructing codes or performing calculations with codes (see Section <a href="chap7.html#X8308D685809A4E2F"><span class="RefLink">7.5</span></a>).</p>

<p><a id="X87C753EB840C34D3" name="X87C753EB840C34D3"></a></p>

<h4>7.1 <span class="Heading">
Distance bounds on codes
</span></h4>

<p>This section describes the functions that calculate estimates for upper bounds on the size and minimum distance of codes. Several algorithms are known to compute a largest number of words a code can have with given length and minimum distance. It is important however to understand that in some cases the true upper bound is unknown. A code which has a size equalto the calculated upper bound may not have been found. However, codes that have a larger size do not exist.</p>

<p>A second way to obtain bounds is a table. In <strong class="pkg">GUAVA</strong>, an extensive table is implemented for linear codes over <span class="SimpleMath">GF(2)</span>, <span class="SimpleMath">GF(3)</span> and <span class="SimpleMath">GF(4)</span>. It contains bounds on the minimum distance for given word length and dimension. It contains entries for word lengths less than or equal to <span class="SimpleMath">257</span>, <span class="SimpleMath">243</span> and <span class="SimpleMath">256</span> for codes over <span class="SimpleMath">GF(2)</span>, <span class="SimpleMath">GF(3)</span> and <span class="SimpleMath">GF(4)</span> respectively. These entries were obtained from Brouwer's tables as of 11 May 2006. For the latest information, please see A. E. Brouwer's tables <a href="chapBib.html#biBBr">[Bro06]</a> on the internet.</p>

<p>Firstly, we describe functions that compute specific upper bounds on the code size (see <code class="func">UpperBoundSingleton</code> (<a href="chap7.html#X8673277C7F6C04C3"><span class="RefLink">7.1-1</span></a>), <code class="func">UpperBoundHamming</code> (<a href="chap7.html#X828095537C91FDFA"><span class="RefLink">7.1-2</span></a>), <code class="func">UpperBoundJohnson</code> (<a href="chap7.html#X82EBFAAB7F5BFD4A"><span class="RefLink">7.1-3</span></a>), <code class="func">UpperBoundPlotkin</code> (<a href="chap7.html#X7A26E2537DFF4409"><span class="RefLink">7.1-4</span></a>), <code class="func">UpperBoundElias</code> (<a href="chap7.html#X86A5A7C67F625A40"><span class="RefLink">7.1-5</span></a>) and <code class="func">UpperBoundGriesmer</code> (<a href="chap7.html#X82366C277E218130"><span class="RefLink">7.1-6</span></a>)).</p>

<p>Next we describe a function that computes <strong class="pkg">GUAVA</strong>'s best upper bound on the code size (see <code class="func">UpperBound</code> (<a href="chap7.html#X7A5CB74485184FEE"><span class="RefLink">7.1-8</span></a>)).</p>

<p>Then we describe two functions that compute a lower and upper bound on the minimum distance of a code (see <code class="func">LowerBoundMinimumDistance</code> (<a href="chap7.html#X7FDF54BA81115D88"><span class="RefLink">7.1-9</span></a>) and <code class="func">UpperBoundMinimumDistance</code> (<a href="chap7.html#X7C6A58327BD6B685"><span class="RefLink">7.1-12</span></a>)).</p>

<p>Finally, we describe a function that returns a lower and upper bound on the minimum distance with given parameters and a description of how the bounds were obtained (see <code class="func">BoundsMinimumDistance</code> (<a href="chap7.html#X7B3858B27A9E509A"><span class="RefLink">7.1-13</span></a>)).</p>

<p><a id="X8673277C7F6C04C3" name="X8673277C7F6C04C3"></a></p>

<h5>7.1-1 UpperBoundSingleton</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; UpperBoundSingleton</code>( <var class="Arg">n</var>, <var class="Arg">d</var>, <var class="Arg">q</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">UpperBoundSingleton</code> returns the Singleton bound for a code of length <var class="Arg">n</var>, minimum distance <var class="Arg">d</var> over a field of size <var class="Arg">q</var>. This bound is based on the shortening of codes. By shortening an <span class="SimpleMath">(n, M, d)</span> code <span class="SimpleMath">d-1</span> times, an <span class="SimpleMath">(n-d+1,M,1)</span> code results, with <span class="SimpleMath">M ≤ q^n-d+1</span> (see <code class="func">ShortenedCode</code> (<a href="chap6.html#X81CBEAFF7B9DE6EF"><span class="RefLink">6.1-9</span></a>)). Thus</p>

<p class="pcenter">
M \leq q^{n-d+1}.
</p>

<p>Codes that meet this bound are called <em>maximum distance separable</em> (see <code class="func">IsMDSCode</code> (<a href="chap4.html#X789380D28018EC3F"><span class="RefLink">4.3-7</span></a>)).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperBoundSingleton(4, 3, 5);</span>
25
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C := ReedSolomonCode(4,3);; Size(C);</span>
25
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsMDSCode(C);</span>
true 
</pre></div>

<p><a id="X828095537C91FDFA" name="X828095537C91FDFA"></a></p>

<h5>7.1-2 UpperBoundHamming</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; UpperBoundHamming</code>( <var class="Arg">n</var>, <var class="Arg">d</var>, <var class="Arg">q</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The Hamming bound (also known as the <em>sphere packing bound</em>) returns an upper bound on the size of a code of length <var class="Arg">n</var>, minimum distance <var class="Arg">d</var>, over a field of size <var class="Arg">q</var>. The Hamming bound is obtained by dividing the contents of the entire space <span class="SimpleMath">GF(q)^n</span> by the contents of a ball with radius <span class="SimpleMath">⌊(d-1) / 2⌋</span>. As all these balls are disjoint, they can never contain more than the whole vector space.</p>

<p class="pcenter">
M \leq {q^n \over V(n,e)},
</p>

<p>where <span class="SimpleMath">M</span> is the maxmimum number of codewords and <span class="SimpleMath">V(n,e)</span> is equal to the contents of a ball of radius <span class="SimpleMath">e</span> (see <code class="func">SphereContent</code> (<a href="chap7.html#X85303BAE7BD46D81"><span class="RefLink">7.5-5</span></a>)). This bound is useful for small values of <var class="Arg">d</var>. Codes for which equality holds are called <em>perfect</em> (see <code class="func">IsPerfectCode</code> (<a href="chap4.html#X85E3BD26856424F7"><span class="RefLink">4.3-6</span></a>)).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperBoundHamming( 15, 3, 2 );</span>
2048
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C := HammingCode( 4, GF(2) );</span>
a linear [15,11,3]1 Hamming (4,2) code over GF(2)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( C );</span>
2048 
</pre></div>

<p><a id="X82EBFAAB7F5BFD4A" name="X82EBFAAB7F5BFD4A"></a></p>

<h5>7.1-3 UpperBoundJohnson</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; UpperBoundJohnson</code>( <var class="Arg">n</var>, <var class="Arg">d</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The Johnson bound is an improved version of the Hamming bound (see <code class="func">UpperBoundHamming</code> (<a href="chap7.html#X828095537C91FDFA"><span class="RefLink">7.1-2</span></a>)). In addition to the Hamming bound, it takes into account the elements of the space outside the balls of radius <span class="SimpleMath">e</span> around the elements of the code. The Johnson bound only works for binary codes.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperBoundJohnson( 13, 5 );</span>
77
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperBoundHamming( 13, 5, 2);</span>
89   # in this case the Johnson bound is better 
</pre></div>

<p><a id="X7A26E2537DFF4409" name="X7A26E2537DFF4409"></a></p>

<h5>7.1-4 UpperBoundPlotkin</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; UpperBoundPlotkin</code>( <var class="Arg">n</var>, <var class="Arg">d</var>, <var class="Arg">q</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The function <code class="code">UpperBoundPlotkin</code> calculates the sum of the distances of all ordered pairs of different codewords. It is based on the fact that the minimum distance is at most equal to the average distance. It is a good bound if the weights of the codewords do not differ much. It results in:</p>

<p class="pcenter">
M \leq {d \over {d-(1-1/q)n}},
</p>

<p>where <span class="SimpleMath">M</span> is the maximum number of codewords. In this case, <var class="Arg">d</var> must be larger than <span class="SimpleMath">(1-1/q)n</span>, but by shortening the code, the case <span class="SimpleMath">d ⟨ (1-1/q)n</span> is covered.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperBoundPlotkin( 15, 7, 2 );</span>
32
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C := BCHCode( 15, 7, GF(2) );</span>
a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(C);</span>
32
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">WeightDistribution(C);</span>
[ 1, 0, 0, 0, 0, 0, 0, 15, 15, 0, 0, 0, 0, 0, 0, 1 ] 
</pre></div>

<p><a id="X86A5A7C67F625A40" name="X86A5A7C67F625A40"></a></p>

<h5>7.1-5 UpperBoundElias</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; UpperBoundElias</code>( <var class="Arg">n</var>, <var class="Arg">d</var>, <var class="Arg">q</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The Elias bound is an improvement of the Plotkin bound (see <code class="func">UpperBoundPlotkin</code> (<a href="chap7.html#X7A26E2537DFF4409"><span class="RefLink">7.1-4</span></a>)) for large codes. Subcodes are used to decrease the size of the code, in this case the subcode of all codewords within a certain ball. This bound is useful for large codes with relatively small minimum distances.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperBoundPlotkin( 16, 3, 2 );</span>
12288
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperBoundElias( 16, 3, 2 );</span>
10280 
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperBoundElias( 20, 10, 3 );</span>
16255
</pre></div>

<p><a id="X82366C277E218130" name="X82366C277E218130"></a></p>

<h5>7.1-6 UpperBoundGriesmer</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; UpperBoundGriesmer</code>( <var class="Arg">n</var>, <var class="Arg">d</var>, <var class="Arg">q</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The Griesmer bound is valid only for linear codes. It is obtained by counting the number of equal symbols in each row of the generator matrix of the code. By omitting the coordinates in which all rows have a zero, a smaller code results. The Griesmer bound is obtained by repeating this proces until a trivial code is left in the end.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperBoundGriesmer( 13, 5, 2 );</span>
64
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperBoundGriesmer( 18, 9, 2 );</span>
8        # the maximum number of words for a linear code is 8
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( PuncturedCode( HadamardCode( 20, 1 ) ) );</span>
20       # this non-linear code has 20 elements 
</pre></div>

<p><a id="X8301FA9F7C6C7445" name="X8301FA9F7C6C7445"></a></p>

<h5>7.1-7 IsGriesmerCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsGriesmerCode</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">IsGriesmerCode</code> returns `true' if a linear code <var class="Arg">C</var> is a Griesmer code, and `false' otherwise. A code is called <em>Griesmer</em> if its length satisfies</p>

<p class="pcenter">
n = g[k,d] = \sum_{i=0}^{k-1} \lceil \frac{d}{q^i} \rceil.
</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsGriesmerCode( HammingCode( 3, GF(2) ) );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsGriesmerCode( BCHCode( 17, 2, GF(2) ) );</span>
false 
</pre></div>

<p><a id="X7A5CB74485184FEE" name="X7A5CB74485184FEE"></a></p>

<h5>7.1-8 UpperBound</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; UpperBound</code>( <var class="Arg">n</var>, <var class="Arg">d</var>, <var class="Arg">q</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">UpperBound</code> returns the best known upper bound <span class="SimpleMath">A(n,d)</span> for the size of a code of length <var class="Arg">n</var>, minimum distance <var class="Arg">d</var> over a field of size <var class="Arg">q</var>. The function <code class="code">UpperBound</code> first checks for trivial cases (like <span class="SimpleMath">d=1</span> or <span class="SimpleMath">n=d</span>), and if the value is in the built-in table. Then it calculates the minimum value of the upper bound using the methods of Singleton (see <code class="func">UpperBoundSingleton</code> (<a href="chap7.html#X8673277C7F6C04C3"><span class="RefLink">7.1-1</span></a>)), Hamming (see <code class="func">UpperBoundHamming</code> (<a href="chap7.html#X828095537C91FDFA"><span class="RefLink">7.1-2</span></a>)), Johnson (see <code class="func">UpperBoundJohnson</code> (<a href="chap7.html#X82EBFAAB7F5BFD4A"><span class="RefLink">7.1-3</span></a>)), Plotkin (see <code class="func">UpperBoundPlotkin</code> (<a href="chap7.html#X7A26E2537DFF4409"><span class="RefLink">7.1-4</span></a>)) and Elias (see <code class="func">UpperBoundElias</code> (<a href="chap7.html#X86A5A7C67F625A40"><span class="RefLink">7.1-5</span></a>)). If the code is binary, <span class="SimpleMath">A(n, 2⋅ ℓ-1) = A(n+1,2⋅ ℓ)</span>, so the <code class="code">UpperBound</code> takes the minimum of the values obtained from all methods for the parameters <span class="SimpleMath">(n, 2⋅ℓ-1)</span> and <span class="SimpleMath">(n+1, 2⋅ ℓ)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperBound( 10, 3, 2 );</span>
85
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperBound( 25, 9, 8 );</span>
1211778792827540 
</pre></div>

<p><a id="X7FDF54BA81115D88" name="X7FDF54BA81115D88"></a></p>

<h5>7.1-9 LowerBoundMinimumDistance</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LowerBoundMinimumDistance</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>In this form, <code class="code">LowerBoundMinimumDistance</code> returns a lower bound for the minimum distance of code <var class="Arg">C</var>.</p>

<p>This command can also be called using the syntax <code class="code">LowerBoundMinimumDistance( n, k, F )</code>. In this form, <code class="code">LowerBoundMinimumDistance</code> returns a lower bound for the minimum distance of the best known linear code of length <var class="Arg">n</var>, dimension <var class="Arg">k</var> over field <var class="Arg">F</var>. It uses the mechanism explained in section <a href="chap7.html#X7B3858B27A9E509A"><span class="RefLink">7.1-13</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C := BCHCode( 45, 7 );</span>
a cyclic [45,23,7..9]6..16 BCH code, delta=7, b=1 over GF(2)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LowerBoundMinimumDistance( C );</span>
7     # designed distance is lower bound for minimum distance 
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LowerBoundMinimumDistance( 45, 23, GF(2) );</span>
10 
</pre></div>

<p><a id="X7CF15D2084499869" name="X7CF15D2084499869"></a></p>

<h5>7.1-10 LowerBoundGilbertVarshamov</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LowerBoundGilbertVarshamov</code>( <var class="Arg">n</var>, <var class="Arg">d</var>, <var class="Arg">q</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This is the lower bound on the size of a linear code due (independently) to Gilbert and Varshamov. It says that for each <var class="Arg">n</var> and <var class="Arg">d</var>, there exists a linear code having length <span class="SimpleMath">n</span> and minimum distance <span class="SimpleMath">d</span> at least of size <span class="SimpleMath">q^k</span>, where <span class="SimpleMath">k</span> is the largest integer such that <span class="SimpleMath">q^k &lt; q^n/</span><code class="code">SphereContent</code><span class="SimpleMath">(n-1,d-2,GF(q))</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LowerBoundGilbertVarshamov(24,8,2);</span>
64
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LowerBoundGilbertVarshamov(7,3,2);</span>
16
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LowerBoundMinimumDistance(7,4,2);</span>
3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LowerBoundGilbertVarshamov(3,3,2);</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LowerBoundMinimumDistance(3,3,2);</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LowerBoundGilbertVarshamov(25,10,2);</span>
16
</pre></div>

<p><a id="X8217D830871286D8" name="X8217D830871286D8"></a></p>

<h5>7.1-11 LowerBoundSpherePacking</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LowerBoundSpherePacking</code>( <var class="Arg">n</var>, <var class="Arg">d</var>, <var class="Arg">q</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This is the (weaker) Gilbert-Varshamov bound valid for unrestricted codes over an alphabet of size <var class="Arg">q</var> (where <var class="Arg">q</var> is an integer &gt; 1). It says that for each <var class="Arg">n</var> and <var class="Arg">r</var>, there exists an unrestricted code at least of size <span class="SimpleMath">q^n/</span><code class="code">SphereContent</code><span class="SimpleMath">(n,d,GF(q))</span> minimum distance <span class="SimpleMath">d</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LowerBoundSpherePacking(3,2,2);</span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LowerBoundSpherePacking(3,3,2);</span>
1
</pre></div>

<p><a id="X7C6A58327BD6B685" name="X7C6A58327BD6B685"></a></p>

<h5>7.1-12 UpperBoundMinimumDistance</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; UpperBoundMinimumDistance</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>In this form, <code class="code">UpperBoundMinimumDistance</code> returns an upper bound for the minimum distance of code <var class="Arg">C</var>. For unrestricted codes, it just returns the word length. For linear codes, it takes the minimum of the possibly known value from the method of construction, the weight of the generators, and the value from the table (see <a href="chap7.html#X7B3858B27A9E509A"><span class="RefLink">7.1-13</span></a>).</p>

<p>This command can also be called using the syntax <code class="code">UpperBoundMinimumDistance( n, k, F )</code>. In this form, <code class="code">UpperBoundMinimumDistance</code> returns an upper bound for the minimum distance of the best known linear code of length <var class="Arg">n</var>, dimension <var class="Arg">k</var> over field <var class="Arg">F</var>. It uses the mechanism explained in section <a href="chap7.html#X7B3858B27A9E509A"><span class="RefLink">7.1-13</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C := BCHCode( 45, 7 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperBoundMinimumDistance( C );</span>
9 
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperBoundMinimumDistance( 45, 23, GF(2) );</span>
11 
</pre></div>

<p><a id="X7B3858B27A9E509A" name="X7B3858B27A9E509A"></a></p>

<h5>7.1-13 BoundsMinimumDistance</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; BoundsMinimumDistance</code>( <var class="Arg">n</var>, <var class="Arg">k</var>, <var class="Arg">F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The function <code class="code">BoundsMinimumDistance</code> calculates a lower and upper bound for the minimum distance of an optimal linear code with word length <var class="Arg">n</var>, dimension <var class="Arg">k</var> over field <var class="Arg">F</var>. The function returns a record with the two bounds and an explanation for each bound. The function <code class="code">Display</code> can be used to show the explanations.</p>

<p>The values for the lower and upper bound are obtained from a table. <strong class="pkg">GUAVA</strong> has tables containing lower and upper bounds for <span class="SimpleMath">q=2 (n ≤ 257), 3 (n ≤ 243), 4 (n ≤ 256)</span>. (Current as of 11 May 2006.) These tables were derived from the table of Brouwer. (See <a href="chapBib.html#biBBr">[Bro06]</a>, <span class="URL"><a href="http://www.win.tue.nl/~aeb/voorlincod.html">http://www.win.tue.nl/~aeb/voorlincod.html</a></span> for the most recent data.) For codes over other fields and for larger word lengths, trivial bounds are used.</p>

<p>The resulting record can be used in the function <code class="code">BestKnownLinearCode</code> (see <code class="func">BestKnownLinearCode</code> (<a href="chap5.html#X871508567CB34D96"><span class="RefLink">5.2-14</span></a>)) to construct a code with minimum distance equal to the lower bound.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">bounds := BoundsMinimumDistance( 7, 3 );; DisplayBoundsInfo( bounds );</span>
an optimal linear [7,3,d] code over GF(2) has d=4
------------------------------------------------------------------------------
Lb(7,3)=4, by shortening of:
Lb(8,4)=4, u u+v construction of C1 and C2:
Lb(4,3)=2, dual of the repetition code
Lb(4,1)=4, repetition code
------------------------------------------------------------------------------
Ub(7,3)=4, Griesmer bound
# The lower bound is equal to the upper bound, so a code with
# these parameters is optimal.
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C := BestKnownLinearCode( bounds );; Display( C );</span>
a linear [7,3,4]2..3 shortened code of
a linear [8,4,4]2 U U+V construction code of
U: a cyclic [4,3,2]1 dual code of
   a cyclic [4,1,4]2 repetition code over GF(2)
V: a cyclic [4,1,4]2 repetition code over GF(2)
</pre></div>

<p><a id="X817D0A647D3331EB" name="X817D0A647D3331EB"></a></p>

<h4>7.2 <span class="Heading">
Covering radius bounds on codes
</span></h4>

<p><a id="X8320D1C180A1AAAD" name="X8320D1C180A1AAAD"></a></p>

<h5>7.2-1 BoundsCoveringRadius</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; BoundsCoveringRadius</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">BoundsCoveringRadius</code> returns a list of integers. The first entry of this list is the maximum of some lower bounds for the covering radius of <var class="Arg">C</var>, the last entry the minimum of some upper bounds of <var class="Arg">C</var>.</p>

<p>If the covering radius of <var class="Arg">C</var> is known, a list of length 1 is returned. <code class="code">BoundsCoveringRadius</code> makes use of the functions <code class="code">GeneralLowerBoundCoveringRadius</code> and <code class="code">GeneralUpperBoundCoveringRadius</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">BoundsCoveringRadius( BCHCode( 17, 3, GF(2) ) );</span>
[ 3 .. 4 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">BoundsCoveringRadius( HammingCode( 5, GF(2) ) );</span>
[ 1 ] 
</pre></div>

<p><a id="X7881E03E812140F4" name="X7881E03E812140F4"></a></p>

<h5>7.2-2 IncreaseCoveringRadiusLowerBound</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IncreaseCoveringRadiusLowerBound</code>( <var class="Arg">C</var>[, <var class="Arg">stopdist</var>][, <var class="Arg">startword</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">IncreaseCoveringRadiusLowerBound</code> tries to increase the lower bound of the covering radius of <var class="Arg">C</var>. It does this by means of a probabilistic algorithm. This algorithm takes a random word in <span class="SimpleMath">GF(q)^n</span> (or <var class="Arg">startword</var> if it is specified), and, by changing random coordinates, tries to get as far from <var class="Arg">C</var> as possible. If changing a coordinate finds a word that has a larger distance to the code than the previous one, the change is made permanent, and the algorithm starts all over again. If changing a coordinate does not find a coset leader that is further away from the code, then the change is made permanent with a chance of 1 in 100, if it gets the word closer to the code, or with a chance of 1 in 10, if the word stays at the same distance. Otherwise, the algorithm starts again with the same word as before.</p>

<p>If the algorithm did not allow changes that decrease the distance to the code, it might get stuck in a sub-optimal situation (the coset leader corresponding to such a situation - i.e. no coordinate of this coset leader can be changed in such a way that we get at a larger distance from the code - is called an <em>orphan</em>).</p>

<p>If the algorithm finds a word that has distance <var class="Arg">stopdist</var> to the code, it ends and returns that word, which can be used for further investigations.</p>

<p>The variable <var class="Arg">InfoCoveringRadius</var> can be set to <var class="Arg">Print</var> to print the maximum distance reached so far every 1000 runs. The algorithm can be interrupted with <strong class="button">ctrl-C</strong>, allowing the user to look at the word that is currently being examined (called `current'), or to change the chances that the new word is made permanent (these are called `staychance' and `downchance'). If one of these variables is <span class="SimpleMath">i</span>, then it corresponds with a <span class="SimpleMath">i</span> in 100 chance.</p>

<p>At the moment, the algorithm is only useful for codes with small dimension, where small means that the elements of the code fit in the memory. It works with larger codes, however, but when you use it for codes with large dimension, you should be <em>very</em> patient. If running the algorithm quits GAP (due to memory problems), you can change the global variable <var class="Arg">CRMemSize</var> to a lower value. This might cause the algorithm to run slower, but without quitting GAP. The only way to find out the best value of <var class="Arg">CRMemSize</var> is by experimenting.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=RandomLinearCode(10,5,GF(2));</span>
a  [10,5,?] randomly generated code over GF(2)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IncreaseCoveringRadiusLowerBound(C,10);</span>
Number of runs: 1000  best distance so far: 3
Number of runs: 2000  best distance so far: 3
Number of changes: 100
Number of runs: 3000  best distance so far: 3
Number of runs: 4000  best distance so far: 3
Number of runs: 5000  best distance so far: 3
Number of runs: 6000  best distance so far: 3
Number of runs: 7000  best distance so far: 3
Number of changes: 200
Number of runs: 8000  best distance so far: 3
Number of runs: 9000  best distance so far: 3
Number of runs: 10000  best distance so far: 3
Number of changes: 300
Number of runs: 11000  best distance so far: 3
Number of runs: 12000  best distance so far: 3
Number of runs: 13000  best distance so far: 3
Number of changes: 400
Number of runs: 14000  best distance so far: 3
user interrupt at... 
#
# used ctrl-c to break out of execution
#
... called from 
IncreaseCoveringRadiusLowerBound( code, -1, current ) called from
 function( arguments ) called from read-eval-loop
Entering break read-eval-print loop ...
you can 'quit;' to quit to outer loop, or
you can 'return;' to continue
<span class="GAPbrkprompt">brk&gt;</span> <span class="GAPinput">current;</span>
[ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ]
<span class="GAPbrkprompt">brk&gt;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CoveringRadius(C);</span>
3

</pre></div>

<p><a id="X7AD9F1D27C52BC0F" name="X7AD9F1D27C52BC0F"></a></p>

<h5>7.2-3 ExhaustiveSearchCoveringRadius</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ExhaustiveSearchCoveringRadius</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">ExhaustiveSearchCoveringRadius</code> does an exhaustive search to find the covering radius of <var class="Arg">C</var>. Every time a coset leader of a coset with weight <span class="SimpleMath">w</span> is found, the function tries to find a coset leader of a coset with weight <span class="SimpleMath">w+1</span>. It does this by enumerating all words of weight <span class="SimpleMath">w+1</span>, and checking whether a word is a coset leader. The start weight is the current known lower bound on the covering radius.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=RandomLinearCode(10,5,GF(2));</span>
a  [10,5,?] randomly generated code over GF(2)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ExhaustiveSearchCoveringRadius(C);</span>
Trying 3 ...
[ 3 .. 5 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CoveringRadius(C);</span>
3

</pre></div>

<p><a id="X85D671F4824B4B0C" name="X85D671F4824B4B0C"></a></p>

<h5>7.2-4 GeneralLowerBoundCoveringRadius</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GeneralLowerBoundCoveringRadius</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">GeneralLowerBoundCoveringRadius</code> returns a lower bound on the covering radius of <var class="Arg">C</var>. It uses as many functions which names start with <code class="code">LowerBoundCoveringRadius</code> as possible to find the best known lower bound (at least that <strong class="pkg">GUAVA</strong> knows of) together with tables for the covering radius of binary linear codes with length not greater than <span class="SimpleMath">64</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=RandomLinearCode(10,5,GF(2));</span>
a  [10,5,?] randomly generated code over GF(2)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GeneralLowerBoundCoveringRadius(C);</span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CoveringRadius(C);</span>
3

</pre></div>

<p><a id="X8638F5A67D6E50C1" name="X8638F5A67D6E50C1"></a></p>

<h5>7.2-5 GeneralUpperBoundCoveringRadius</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GeneralUpperBoundCoveringRadius</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">GeneralUpperBoundCoveringRadius</code> returns an upper bound on the covering radius of <var class="Arg">C</var>. It uses as many functions which names start with <code class="code">UpperBoundCoveringRadius</code> as possible to find the best known upper bound (at least that <strong class="pkg">GUAVA</strong> knows of).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=RandomLinearCode(10,5,GF(2));</span>
a  [10,5,?] randomly generated code over GF(2)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GeneralUpperBoundCoveringRadius(C);</span>
4
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CoveringRadius(C);</span>
3

</pre></div>

<p><a id="X7E7FBCC87D5562AB" name="X7E7FBCC87D5562AB"></a></p>

<h5>7.2-6 LowerBoundCoveringRadiusSphereCovering</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LowerBoundCoveringRadiusSphereCovering</code>( <var class="Arg">n</var>, <var class="Arg">M</var>[, <var class="Arg">F</var>], <var class="Arg">false</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This command can also be called using the syntax <code class="code">LowerBoundCoveringRadiusSphereCovering( n, r, [F,] true )</code>. If the last argument of <code class="code">LowerBoundCoveringRadiusSphereCovering</code> is <var class="Arg">false</var>, then it returns a lower bound for the covering radius of a code of size <var class="Arg">M</var> and length <var class="Arg">n</var>. Otherwise, it returns a lower bound for the size of a code of length <var class="Arg">n</var> and covering radius <var class="Arg">r</var>.</p>

<p><var class="Arg">F</var> is the field over which the code is defined. If <var class="Arg">F</var> is omitted, it is assumed that the code is over <span class="SimpleMath">GF(2)</span>. The bound is computed according to the sphere covering bound:</p>

<p class="pcenter">
M \cdot V_q(n,r) \geq q^n
</p>

<p>where <span class="SimpleMath">V_q(n,r)</span> is the size of a sphere of radius <span class="SimpleMath">r</span> in <span class="SimpleMath">GF(q)^n</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=RandomLinearCode(10,5,GF(2));</span>
a  [10,5,?] randomly generated code over GF(2)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(C);</span>
32
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CoveringRadius(C);</span>
3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LowerBoundCoveringRadiusSphereCovering(10,32,GF(2),false);</span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LowerBoundCoveringRadiusSphereCovering(10,3,GF(2),true);</span>
6

</pre></div>

<p><a id="X85E20C518360AB70" name="X85E20C518360AB70"></a></p>

<h5>7.2-7 LowerBoundCoveringRadiusVanWee1</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LowerBoundCoveringRadiusVanWee1</code>( <var class="Arg">n</var>, <var class="Arg">M</var>[, <var class="Arg">F</var>], <var class="Arg">false</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This command can also be called using the syntax <code class="code">LowerBoundCoveringRadiusVanWee1( n, r, [F,] true )</code>. If the last argument of <code class="code">LowerBoundCoveringRadiusVanWee1</code> is <var class="Arg">false</var>, then it returns a lower bound for the covering radius of a code of size <var class="Arg">M</var> and length <var class="Arg">n</var>. Otherwise, it returns a lower bound for the size of a code of length <var class="Arg">n</var> and covering radius <var class="Arg">r</var>.</p>

<p><var class="Arg">F</var> is the field over which the code is defined. If <var class="Arg">F</var> is omitted, it is assumed that the code is over <span class="SimpleMath">GF(2)</span>.</p>

<p>The Van Wee bound is an improvement of the sphere covering bound:</p>

<p class="pcenter">
M \cdot \left\{ V_q(n,r) -
\frac{{n \choose r}}{\lceil\frac{n-r}{r+1}\rceil}
\left(\left\lceil\frac{n+1}{r+1}\right\rceil - \frac{n+1}{r+1}\right)
\right\} \geq q^n
</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=RandomLinearCode(10,5,GF(2));</span>
a  [10,5,?] randomly generated code over GF(2)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(C);</span>
32
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CoveringRadius(C);</span>
3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LowerBoundCoveringRadiusVanWee1(10,32,GF(2),false);</span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LowerBoundCoveringRadiusVanWee1(10,3,GF(2),true);</span>
6

</pre></div>

<p><a id="X7C72994A825228E7" name="X7C72994A825228E7"></a></p>

<h5>7.2-8 LowerBoundCoveringRadiusVanWee2</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LowerBoundCoveringRadiusVanWee2</code>( <var class="Arg">n</var>, <var class="Arg">M</var>, <var class="Arg">false</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This command can also be called using the syntax <code class="code">LowerBoundCoveringRadiusVanWee2( n, r [,true] )</code>. If the last argument of <code class="code">LowerBoundCoveringRadiusVanWee2</code> is <var class="Arg">false</var>, then it returns a lower bound for the covering radius of a code of size <var class="Arg">M</var> and length <var class="Arg">n</var>. Otherwise, it returns a lower bound for the size of a code of length <var class="Arg">n</var> and covering radius <var class="Arg">r</var>.</p>

<p>This bound only works for binary codes. It is based on the following inequality:</p>

<p class="pcenter">
M \cdot \frac{\left( \left( V_2(n,2) - \frac{1}{2}(r+2)(r-1) \right)
V_2(n,r) + \varepsilon
V_2(n,r-2) \right)}
{(V_2(n,2) - \frac{1}{2}(r+2)(r-1) + \varepsilon)}
\geq 2^n,
</p>

<p>where</p>

<p class="pcenter">
\varepsilon = {r+2 \choose 2} \left\lceil
{n-r+1 \choose 2} / {r+2 \choose 2} \right\rceil
- {n-r+1 \choose 2}.
</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=RandomLinearCode(10,5,GF(2));</span>
a  [10,5,?] randomly generated code over GF(2)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(C);</span>
32
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CoveringRadius(C);</span>
3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LowerBoundCoveringRadiusVanWee2(10,32,false);</span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LowerBoundCoveringRadiusVanWee2(10,3,true);</span>
7

</pre></div>

<p><a id="X7F95362485759ACB" name="X7F95362485759ACB"></a></p>

<h5>7.2-9 LowerBoundCoveringRadiusCountingExcess</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LowerBoundCoveringRadiusCountingExcess</code>( <var class="Arg">n</var>, <var class="Arg">M</var>, <var class="Arg">false</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This command can also be called with <code class="code">LowerBoundCoveringRadiusCountingExcess( n, r [,true] )</code>. If the last argument of <code class="code">LowerBoundCoveringRadiusCountingExcess</code> is <var class="Arg">false</var>, then it returns a lower bound for the covering radius of a code of size <var class="Arg">M</var> and length <var class="Arg">n</var>. Otherwise, it returns a lower bound for the size of a code of length <var class="Arg">n</var> and covering radius <var class="Arg">r</var>.</p>

<p>This bound only works for binary codes. It is based on the following inequality:</p>

<p class="pcenter">
M \cdot \left( \rho V_2(n,r) + \varepsilon V_2(n,r-1) \right) \geq
(\rho + \varepsilon) 2^n,
</p>

<p>where</p>

<p class="pcenter">
\varepsilon = (r+1) \left\lceil\frac{n+1}{r+1}\right\rceil - (n+1)
</p>

<p>and</p>

<p class="pcenter">
\rho = \left\{
\begin{array}{l}
n-3+\frac{2}{n}, \ \ \  \ \ \  {\rm if}\   r = 2\\
n-r-1  ,        \ \ \  \ \ \   {\rm if}\   r \geq 3 .
\end{array}
\right.
</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=RandomLinearCode(10,5,GF(2));</span>
a  [10,5,?] randomly generated code over GF(2)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(C);</span>
32
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CoveringRadius(C);</span>
3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LowerBoundCoveringRadiusCountingExcess(10,32,false);</span>
0
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LowerBoundCoveringRadiusCountingExcess(10,3,true);</span>
7

</pre></div>

<p><a id="X829C14A383B5BF59" name="X829C14A383B5BF59"></a></p>

<h5>7.2-10 LowerBoundCoveringRadiusEmbedded1</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LowerBoundCoveringRadiusEmbedded1</code>( <var class="Arg">n</var>, <var class="Arg">M</var>, <var class="Arg">false</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This command can also be called with <code class="code">LowerBoundCoveringRadiusEmbedded1( n, r [,true] )</code>. If the last argument of <code class="code">LowerBoundCoveringRadiusEmbedded1</code> is 'false', then it returns a lower bound for the covering radius of a code of size <var class="Arg">M</var> and length <var class="Arg">n</var>. Otherwise, it returns a lower bound for the size of a code of length <var class="Arg">n</var> and covering radius <var class="Arg">r</var>.</p>

<p>This bound only works for binary codes. It is based on the following inequality:</p>

<p class="pcenter">
M \cdot \left( V_2(n,r) - {2r \choose r} \right) \geq
2^n - A( n, 2r+1 ) {2r \choose r},
</p>

<p>where <span class="SimpleMath">A(n,d)</span> denotes the maximal cardinality of a (binary) code of length <span class="SimpleMath">n</span> and minimum distance <span class="SimpleMath">d</span>. The function <code class="code">UpperBound</code> is used to compute this value.</p>

<p>Sometimes <code class="code">LowerBoundCoveringRadiusEmbedded1</code> is better than <code class="code">LowerBoundCoveringRadiusEmbedded2</code>, sometimes it is the other way around.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=RandomLinearCode(10,5,GF(2));</span>
a  [10,5,?] randomly generated code over GF(2)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(C);</span>
32
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CoveringRadius(C);</span>
3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LowerBoundCoveringRadiusEmbedded1(10,32,false);</span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LowerBoundCoveringRadiusEmbedded1(10,3,true);</span>
7

</pre></div>

<p><a id="X7B0C81B88604C448" name="X7B0C81B88604C448"></a></p>

<h5>7.2-11 LowerBoundCoveringRadiusEmbedded2</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LowerBoundCoveringRadiusEmbedded2</code>( <var class="Arg">n</var>, <var class="Arg">M</var>, <var class="Arg">false</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This command can also be called with <code class="code">LowerBoundCoveringRadiusEmbedded2( n, r [,true] )</code>. If the last argument of <code class="code">LowerBoundCoveringRadiusEmbedded2</code> is 'false', then it returns a lower bound for the covering radius of a code of size <var class="Arg">M</var> and length <var class="Arg">n</var>. Otherwise, it returns a lower bound for the size of a code of length <var class="Arg">n</var> and covering radius <var class="Arg">r</var>.</p>

<p>This bound only works for binary codes. It is based on the following inequality:</p>

<p class="pcenter">
M \cdot \left( V_2(n,r) - \frac{3}{2} {2r \choose r} \right) \geq
2^n - 2A( n, 2r+1 ) {2r \choose r},
</p>

<p>where <span class="SimpleMath">A(n,d)</span> denotes the maximal cardinality of a (binary) code of length <span class="SimpleMath">n</span> and minimum distance <span class="SimpleMath">d</span>. The function <code class="code">UpperBound</code> is used to compute this value.</p>

<p>Sometimes <code class="code">LowerBoundCoveringRadiusEmbedded1</code> is better than <code class="code">LowerBoundCoveringRadiusEmbedded2</code>, sometimes it is the other way around.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=RandomLinearCode(15,5,GF(2));</span>
a  [15,5,?] randomly generated code over GF(2)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(C);</span>
32
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CoveringRadius(C);</span>
6
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LowerBoundCoveringRadiusEmbedded2(10,32,false);</span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LowerBoundCoveringRadiusEmbedded2(10,3,true);</span>
7

</pre></div>

<p><a id="X7D27F6E27B9A0D35" name="X7D27F6E27B9A0D35"></a></p>

<h5>7.2-12 LowerBoundCoveringRadiusInduction</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LowerBoundCoveringRadiusInduction</code>( <var class="Arg">n</var>, <var class="Arg">r</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">LowerBoundCoveringRadiusInduction</code> returns a lower bound for the size of a code with length <var class="Arg">n</var> and covering radius <var class="Arg">r</var>.</p>

<p>If <span class="SimpleMath">n = 2r+2</span> and <span class="SimpleMath">r ≥ 1</span>, the returned value is <span class="SimpleMath">4</span>.</p>

<p>If <span class="SimpleMath">n = 2r+3</span> and <span class="SimpleMath">r ≥ 1</span>, the returned value is <span class="SimpleMath">7</span>.</p>

<p>If <span class="SimpleMath">n = 2r+4</span> and <span class="SimpleMath">r ≥ 4</span>, the returned value is <span class="SimpleMath">8</span>.</p>

<p>Otherwise, <span class="SimpleMath">0</span> is returned.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=RandomLinearCode(15,5,GF(2));</span>
a  [15,5,?] randomly generated code over GF(2)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CoveringRadius(C);</span>
5
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LowerBoundCoveringRadiusInduction(15,6);</span>
7

</pre></div>

<p><a id="X80F8DFAD7D67CBEC" name="X80F8DFAD7D67CBEC"></a></p>

<h5>7.2-13 UpperBoundCoveringRadiusRedundancy</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; UpperBoundCoveringRadiusRedundancy</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">UpperBoundCoveringRadiusRedundancy</code> returns the redundancy of <var class="Arg">C</var> as an upper bound for the covering radius of <var class="Arg">C</var>. <var class="Arg">C</var> must be a linear code.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=RandomLinearCode(15,5,GF(2));</span>
a  [15,5,?] randomly generated code over GF(2)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CoveringRadius(C);</span>
5
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperBoundCoveringRadiusRedundancy(C);</span>
10

</pre></div>

<p><a id="X832847A17FD0D142" name="X832847A17FD0D142"></a></p>

<h5>7.2-14 UpperBoundCoveringRadiusDelsarte</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; UpperBoundCoveringRadiusDelsarte</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">UpperBoundCoveringRadiusDelsarte</code> returns an upper bound for the covering radius of <var class="Arg">C</var>. This upper bound is equal to the external distance of <var class="Arg">C</var>, this is the minimum distance of the dual code, if <var class="Arg">C</var> is a linear code.</p>

<p>This is described in Theorem 11.3.3 of <a href="chapBib.html#biBHP03">[HP03]</a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=RandomLinearCode(15,5,GF(2));</span>
a  [15,5,?] randomly generated code over GF(2)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CoveringRadius(C);</span>
5
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperBoundCoveringRadiusDelsarte(C);</span>
13
</pre></div>

<p><a id="X86F10D9E79AB8796" name="X86F10D9E79AB8796"></a></p>

<h5>7.2-15 UpperBoundCoveringRadiusStrength</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; UpperBoundCoveringRadiusStrength</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">UpperBoundCoveringRadiusStrength</code> returns an upper bound for the covering radius of <var class="Arg">C</var>.</p>

<p>First the code is punctured at the zero coordinates (i.e. the coordinates where all codewords have a zero). If the remaining code has <em>strength</em> 1 (i.e. each coordinate contains each element of the field an equal number of times), then it returns <span class="SimpleMath">fracq-1qm + (n-m)</span> (where <span class="SimpleMath">q</span> is the size of the field and <span class="SimpleMath">m</span> is the length of punctured code), otherwise it returns <span class="SimpleMath">n</span>. This bound works for all codes.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=RandomLinearCode(15,5,GF(2));</span>
a  [15,5,?] randomly generated code over GF(2)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CoveringRadius(C);</span>
5
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperBoundCoveringRadiusStrength(C);</span>
7
</pre></div>

<p><a id="X8585C6A982489FC3" name="X8585C6A982489FC3"></a></p>

<h5>7.2-16 UpperBoundCoveringRadiusGriesmerLike</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; UpperBoundCoveringRadiusGriesmerLike</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function returns an upper bound for the covering radius of <var class="Arg">C</var>, which must be linear, in a Griesmer-like fashion. It returns</p>

<p class="pcenter">
n - \sum_{i=1}^k \left\lceil \frac{d}{q^i} \right\rceil
</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=RandomLinearCode(15,5,GF(2));</span>
a  [15,5,?] randomly generated code over GF(2)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CoveringRadius(C);</span>
5
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperBoundCoveringRadiusGriesmerLike(C);</span>
9

</pre></div>

<p><a id="X82A38F5F858CF3FC" name="X82A38F5F858CF3FC"></a></p>

<h5>7.2-17 UpperBoundCoveringRadiusCyclicCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; UpperBoundCoveringRadiusCyclicCode</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function returns an upper bound for the covering radius of <var class="Arg">C</var>, which must be a cyclic code. It returns</p>

<p class="pcenter">
n - k + 1 - \left\lceil \frac{w(g(x))}{2} \right\rceil,
</p>

<p>where <span class="SimpleMath">g(x)</span> is the generator polynomial of <var class="Arg">C</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=CyclicCodes(15,GF(2))[3];</span>
a cyclic [15,12,1..2]1..3 enumerated code over GF(2)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CoveringRadius(C);</span>
3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperBoundCoveringRadiusCyclicCode(C);</span>
3

</pre></div>

<p><a id="X84F9246D84B9947A" name="X84F9246D84B9947A"></a></p>

<h4>7.3 <span class="Heading">
Special matrices in <strong class="pkg">GUAVA</strong>
</span></h4>

<p>This section explains functions that work with special matrices <strong class="pkg">GUAVA</strong> needs for several codes.</p>

<p>Firstly, we describe some matrix generating functions (see <code class="func">KrawtchoukMat</code> (<a href="chap7.html#X82899B64802A4BCE"><span class="RefLink">7.3-1</span></a>), <code class="func">GrayMat</code> (<a href="chap7.html#X87AFE2C078031CE4"><span class="RefLink">7.3-2</span></a>), <code class="func">SylvesterMat</code> (<a href="chap7.html#X7E1E7C5287919CDB"><span class="RefLink">7.3-3</span></a>), <code class="func">HadamardMat</code> (<a href="chap7.html#X8014A1F181ECD8AA"><span class="RefLink">7.3-4</span></a>) and <code class="func">MOLS</code> (<a href="chap7.html#X804AAFF2867080F7"><span class="RefLink">7.3-11</span></a>)).</p>

<p>Next we describe two functions regarding a standard form of matrices (see <code class="func">PutStandardForm</code> (<a href="chap7.html#X7B47D82485B66F1D"><span class="RefLink">7.3-6</span></a>) and <code class="func">IsInStandardForm</code> (<a href="chap7.html#X7D4EDA0A854EBFEF"><span class="RefLink">7.3-7</span></a>)).</p>

<p>Then we describe functions that return a matrix after a manipulation (see <code class="func">PermutedCols</code> (<a href="chap7.html#X7A97AD477E7638DE"><span class="RefLink">7.3-8</span></a>), <code class="func">VerticalConversionFieldMat</code> (<a href="chap7.html#X7B68119F85E9EC6D"><span class="RefLink">7.3-9</span></a>) and <code class="func">HorizontalConversionFieldMat</code> (<a href="chap7.html#X8033E9A67BA155C8"><span class="RefLink">7.3-10</span></a>)).</p>

<p>Finally, we describe functions that do some tests on matrices (see <code class="func">IsLatinSquare</code> (<a href="chap7.html#X7F34306B81DC2776"><span class="RefLink">7.3-12</span></a>) and <code class="func">AreMOLS</code> (<a href="chap7.html#X81B9B40B7B2D97D5"><span class="RefLink">7.3-13</span></a>)).</p>

<p><a id="X82899B64802A4BCE" name="X82899B64802A4BCE"></a></p>

<h5>7.3-1 KrawtchoukMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; KrawtchoukMat</code>( <var class="Arg">n</var>, <var class="Arg">q</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">KrawtchoukMat</code> returns the <span class="SimpleMath">n+1</span> by <span class="SimpleMath">n+1</span> matrix <span class="SimpleMath">K=(k_ij)</span> defined by <span class="SimpleMath">k_ij=K_i(j)</span> for <span class="SimpleMath">i,j=0,...,n</span>. <span class="SimpleMath">K_i(j)</span> is the Krawtchouk number (see <code class="func">Krawtchouk</code> (<a href="chap7.html#X7ACDC5377CD17451"><span class="RefLink">7.5-6</span></a>)). <var class="Arg">n</var> must be a positive integer and <var class="Arg">q</var> a prime power. The Krawtchouk matrix is used in the <em>MacWilliams identities</em>, defining the relation between the weight distribution of a code of length <var class="Arg">n</var> over a field of size <var class="Arg">q</var>, and its dual code. Each call to <code class="code">KrawtchoukMat</code> returns a new matrix, so it is safe to modify the result.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrintArray( KrawtchoukMat( 3, 2 ) );</span>
[ [   1,   1,   1,   1 ],
  [   3,   1,  -1,  -3 ],
  [   3,  -1,  -1,   3 ],
  [   1,  -1,   1,  -1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C := HammingCode( 3 );; a := WeightDistribution( C );</span>
[ 1, 0, 0, 7, 7, 0, 0, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n := WordLength( C );; q := Size( LeftActingDomain( C ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">k := Dimension( C );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">q^( -k ) * KrawtchoukMat( n, q ) * a;</span>
[ 1, 0, 0, 0, 7, 0, 0, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">WeightDistribution( DualCode( C ) );</span>
[ 1, 0, 0, 0, 7, 0, 0, 0 ] 
</pre></div>

<p><a id="X87AFE2C078031CE4" name="X87AFE2C078031CE4"></a></p>

<h5>7.3-2 GrayMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GrayMat</code>( <var class="Arg">n</var>, <var class="Arg">F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">GrayMat</code> returns a list of all different vectors (see GAP's <code class="code">Vectors</code> command) of length <var class="Arg">n</var> over the field <var class="Arg">F</var>, using Gray ordering. <var class="Arg">n</var> must be a positive integer. This order has the property that subsequent vectors differ in exactly one coordinate. The first vector is always the null vector. Each call to <code class="code">GrayMat</code> returns a new matrix, so it is safe to modify the result.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GrayMat(3);</span>
[ [ 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0 ],
  [ 0*Z(2), Z(2)^0, Z(2)^0 ], [ 0*Z(2), Z(2)^0, 0*Z(2) ],
  [ Z(2)^0, Z(2)^0, 0*Z(2) ], [ Z(2)^0, Z(2)^0, Z(2)^0 ],
  [ Z(2)^0, 0*Z(2), Z(2)^0 ], [ Z(2)^0, 0*Z(2), 0*Z(2) ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G := GrayMat( 4, GF(4) );; Length(G);</span>
256          # the length of a GrayMat is always q^n
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G[101] - G[100];</span>
[ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ] 
</pre></div>

<p><a id="X7E1E7C5287919CDB" name="X7E1E7C5287919CDB"></a></p>

<h5>7.3-3 SylvesterMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SylvesterMat</code>( <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">SylvesterMat</code> returns the <span class="SimpleMath">n× n</span> Sylvester matrix of order <var class="Arg">n</var>. This is a special case of the Hadamard matrices (see <code class="func">HadamardMat</code> (<a href="chap7.html#X8014A1F181ECD8AA"><span class="RefLink">7.3-4</span></a>)). For this construction, <var class="Arg">n</var> must be a power of <span class="SimpleMath">2</span>. Each call to <code class="code">SylvesterMat</code> returns a new matrix, so it is safe to modify the result.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrintArray(SylvesterMat(2));</span>
[ [   1,   1 ],
  [   1,  -1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrintArray( SylvesterMat(4) );</span>
[ [   1,   1,   1,   1 ],
  [   1,  -1,   1,  -1 ],
  [   1,   1,  -1,  -1 ],
  [   1,  -1,  -1,   1 ] ] 
</pre></div>

<p><a id="X8014A1F181ECD8AA" name="X8014A1F181ECD8AA"></a></p>

<h5>7.3-4 HadamardMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; HadamardMat</code>( <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">HadamardMat</code> returns a Hadamard matrix of order <var class="Arg">n</var>. This is an <span class="SimpleMath">n× n</span> matrix with the property that the matrix multiplied by its transpose returns <var class="Arg">n</var> times the identity matrix. This is only possible for <span class="SimpleMath">n=1, n=2</span> or in cases where <var class="Arg">n</var> is a multiple of <span class="SimpleMath">4</span>. If the matrix does not exist or is not known (as of 1998), <code class="code">HadamardMat</code> returns an error. A large number of construction methods is known to create these matrices for different orders. <code class="code">HadamardMat</code> makes use of two construction methods (the Paley Type I and II constructions, and the Sylvester construction -- see <code class="func">SylvesterMat</code> (<a href="chap7.html#X7E1E7C5287919CDB"><span class="RefLink">7.3-3</span></a>)). These methods cover most of the possible Hadamard matrices, although some special algorithms have not been implemented yet. The following orders less than <span class="SimpleMath">100</span> do not yet have an implementation for a Hadamard matrix in <strong class="pkg">GUAVA</strong>: <span class="SimpleMath">52, 92</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C := HadamardMat(8);; PrintArray(C);</span>
[ [   1,   1,   1,   1,   1,   1,   1,   1 ],
  [   1,  -1,   1,  -1,   1,  -1,   1,  -1 ],
  [   1,   1,  -1,  -1,   1,   1,  -1,  -1 ],
  [   1,  -1,  -1,   1,   1,  -1,  -1,   1 ],
  [   1,   1,   1,   1,  -1,  -1,  -1,  -1 ],
  [   1,  -1,   1,  -1,  -1,   1,  -1,   1 ],
  [   1,   1,  -1,  -1,  -1,  -1,   1,   1 ],
  [   1,  -1,  -1,   1,  -1,   1,   1,  -1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C * TransposedMat(C) = 8 * IdentityMat( 8, 8 );</span>
true 
</pre></div>

<p><a id="X797F43607AD8660D" name="X797F43607AD8660D"></a></p>

<h5>7.3-5 VandermondeMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; VandermondeMat</code>( <var class="Arg">X</var>, <var class="Arg">a</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The function <code class="code">VandermondeMat</code> returns the <span class="SimpleMath">(a+1)× n</span> matrix of powers <span class="SimpleMath">x_i^j</span> where <var class="Arg">X</var> is a list of elements of a field, <span class="SimpleMath">X={ x_1,...,x_n}</span>, and <var class="Arg">a</var> is a non-negative integer.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M:=VandermondeMat([Z(5),Z(5)^2,Z(5)^0,Z(5)^3],2);</span>
[ [ Z(5)^0, Z(5), Z(5)^2 ], [ Z(5)^0, Z(5)^2, Z(5)^0 ],
  [ Z(5)^0, Z(5)^0, Z(5)^0 ], [ Z(5)^0, Z(5)^3, Z(5)^2 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display(M);</span>
 1 2 4
 1 4 1
 1 1 1
 1 3 4
</pre></div>

<p><a id="X7B47D82485B66F1D" name="X7B47D82485B66F1D"></a></p>

<h5>7.3-6 PutStandardForm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PutStandardForm</code>( <var class="Arg">M</var>[, <var class="Arg">idleft</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>We say that a <span class="SimpleMath">k× n</span> matrix is in <em>standard form</em> if it is equal to the block matrix <span class="SimpleMath">(I | A)</span>, for some <span class="SimpleMath">k× (n-k)</span> matrix <span class="SimpleMath">A</span> and where <span class="SimpleMath">I</span> is the <span class="SimpleMath">k× k</span> identity matrix. It follows from a basis result in linear algebra that, after a possible permutation of the columns, using elementary row operations, every matrix can be reduced to standard form. <code class="code">PutStandardForm</code> puts a matrix <var class="Arg">M</var> in standard form, and returns the permutation needed to do so. <var class="Arg">idleft</var> is a boolean that sets the position of the identity matrix in <var class="Arg">M</var>. (The default for <var class="Arg">idleft</var> is `true'.) If <var class="Arg">idleft</var> is set to `true', the identity matrix is put on the left side of <var class="Arg">M</var>. Otherwise, it is put at the right side. (This option is useful when putting a check matrix of a code into standard form.) The function <code class="code">BaseMat</code> also returns a similar standard form, but does not apply column permutations. The rows of the matrix still span the same vector space after <code class="code">BaseMat</code>, but after calling <code class="code">PutStandardForm</code>, this is not necessarily true.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M := Z(2)*[[1,0,0,1],[0,0,1,1]];; PrintArray(M);</span>
[ [    Z(2),  0*Z(2),  0*Z(2),    Z(2) ],
  [  0*Z(2),  0*Z(2),    Z(2),    Z(2) ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PutStandardForm(M);                   # identity at the left side</span>
(2,3)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrintArray(M);</span>
[ [    Z(2),  0*Z(2),  0*Z(2),    Z(2) ],
  [  0*Z(2),    Z(2),  0*Z(2),    Z(2) ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PutStandardForm(M, false);            # identity at the right side</span>
(1,4,3)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrintArray(M);</span>
[ [  0*Z(2),    Z(2),    Z(2),  0*Z(2) ],
  [  0*Z(2),    Z(2),  0*Z(2),    Z(2) ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C := BestKnownLinearCode( 23, 12, GF(2) );</span>
a linear [23,12,7]3 punctured code
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=MutableCopyMat(GeneratorMat(C));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PutStandardForm(G);</span>
()
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display(G);</span>
 1 . . . . . . . . . . . 1 . 1 . 1 1 1 . . . 1
 . 1 . . . . . . . . . . 1 1 1 1 1 . . 1 . . .
 . . 1 . . . . . . . . . 1 1 . 1 . . 1 . 1 . 1
 . . . 1 . . . . . . . . 1 1 . . . 1 1 1 . 1 .
 . . . . 1 . . . . . . . 1 1 . . 1 1 . 1 1 . 1
 . . . . . 1 . . . . . . . 1 1 . . 1 1 . 1 1 1
 . . . . . . 1 . . . . . . . 1 1 . . 1 1 . 1 1
 . . . . . . . 1 . . . . 1 . 1 1 . 1 1 1 1 . .
 . . . . . . . . 1 . . . . 1 . 1 1 . 1 1 1 1 .
 . . . . . . . . . 1 . . . . 1 . 1 1 . 1 1 1 .
 . . . . . . . . . . 1 . 1 . 1 1 1 . . . 1 1 1
 . . . . . . . . . . . 1 . 1 . 1 1 1 . . . 1 1

</pre></div>

<p><a id="X7D4EDA0A854EBFEF" name="X7D4EDA0A854EBFEF"></a></p>

<h5>7.3-7 IsInStandardForm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsInStandardForm</code>( <var class="Arg">M</var>[, <var class="Arg">idleft</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">IsInStandardForm</code> determines if <var class="Arg">M</var> is in standard form. <var class="Arg">idleft</var> is a boolean that indicates the position of the identity matrix in <var class="Arg">M</var>, as in <code class="code">PutStandardForm</code> (see <code class="func">PutStandardForm</code> (<a href="chap7.html#X7B47D82485B66F1D"><span class="RefLink">7.3-6</span></a>)). <code class="code">IsInStandardForm</code> checks if the identity matrix is at the left side of <var class="Arg">M</var>, otherwise if it is at the right side. The elements of <var class="Arg">M</var> may be elements of any field.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsInStandardForm(IdentityMat(7, GF(2)));</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsInStandardForm([[1, 1, 0], [1, 0, 1]], false);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsInStandardForm([[1, 3, 2, 7]]);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsInStandardForm(HadamardMat(4));</span>
false 
</pre></div>

<p><a id="X7A97AD477E7638DE" name="X7A97AD477E7638DE"></a></p>

<h5>7.3-8 PermutedCols</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PermutedCols</code>( <var class="Arg">M</var>, <var class="Arg">P</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">PermutedCols</code> returns a matrix <var class="Arg">M</var> with a permutation <var class="Arg">P</var> applied to its columns.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M := [[1,2,3,4],[1,2,3,4]];; PrintArray(M);</span>
[ [  1,  2,  3,  4 ],
  [  1,  2,  3,  4 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrintArray(PermutedCols(M, (1,2,3)));</span>
[ [  3,  1,  2,  4 ],
  [  3,  1,  2,  4 ] ] 
</pre></div>

<p><a id="X7B68119F85E9EC6D" name="X7B68119F85E9EC6D"></a></p>

<h5>7.3-9 VerticalConversionFieldMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; VerticalConversionFieldMat</code>( <var class="Arg">M</var>, <var class="Arg">F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">VerticalConversionFieldMat</code> returns the matrix <var class="Arg">M</var> with its elements converted from a field <span class="SimpleMath">F=GF(q^m)</span>, <span class="SimpleMath">q</span> prime, to a field <span class="SimpleMath">GF(q)</span>. Each element is replaced by its representation over the latter field, placed vertically in the matrix, using the <span class="SimpleMath">GF(p)</span>-vector space isomorphism</p>

<p class="pcenter">

[...] : GF(q)\rightarrow GF(p)^m,
</p>

<p>with <span class="SimpleMath">q=p^m</span>.</p>

<p>If <var class="Arg">M</var> is a <span class="SimpleMath">k</span> by <span class="SimpleMath">n</span> matrix, the result is a <span class="SimpleMath">k⋅ m × n</span> matrix, since each element of <span class="SimpleMath">GF(q^m)</span> can be represented in <span class="SimpleMath">GF(q)</span> using <span class="SimpleMath">m</span> elements.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M := Z(9)*[[1,2],[2,1]];; PrintArray(M);</span>
[ [    Z(3^2),  Z(3^2)^5 ],
  [  Z(3^2)^5,    Z(3^2) ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DefaultField( Flat(M) );</span>
GF(3^2)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">VCFM := VerticalConversionFieldMat( M, GF(9) );; PrintArray(VCFM);</span>
[ [  0*Z(3),  0*Z(3) ],
  [  Z(3)^0,    Z(3) ],
  [  0*Z(3),  0*Z(3) ],
  [    Z(3),  Z(3)^0 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DefaultField( Flat(VCFM) );</span>
GF(3) 
</pre></div>

<p>A similar function is <code class="code">HorizontalConversionFieldMat</code> (see <code class="func">HorizontalConversionFieldMat</code> (<a href="chap7.html#X8033E9A67BA155C8"><span class="RefLink">7.3-10</span></a>)).</p>

<p><a id="X8033E9A67BA155C8" name="X8033E9A67BA155C8"></a></p>

<h5>7.3-10 HorizontalConversionFieldMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; HorizontalConversionFieldMat</code>( <var class="Arg">M</var>, <var class="Arg">F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">HorizontalConversionFieldMat</code> returns the matrix <var class="Arg">M</var> with its elements converted from a field <span class="SimpleMath">F=GF(q^m)</span>, <span class="SimpleMath">q</span> prime, to a field <span class="SimpleMath">GF(q)</span>. Each element is replaced by its representation over the latter field, placed horizontally in the matrix.</p>

<p>If <var class="Arg">M</var> is a <span class="SimpleMath">k × n</span> matrix, the result is a <span class="SimpleMath">k× m× n⋅ m</span> matrix. The new word length of the resulting code is equal to <span class="SimpleMath">n⋅ m</span>, because each element of <span class="SimpleMath">GF(q^m)</span> can be represented in <span class="SimpleMath">GF(q)</span> using <span class="SimpleMath">m</span> elements. The new dimension is equal to <span class="SimpleMath">k× m</span> because the new matrix should be a basis for the same number of vectors as the old one.</p>

<p><code class="code">ConversionFieldCode</code> uses horizontal conversion to convert a code (see <code class="func">ConversionFieldCode</code> (<a href="chap6.html#X81FE1F387DFCCB22"><span class="RefLink">6.1-15</span></a>)).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M := Z(9)*[[1,2],[2,1]];; PrintArray(M);</span>
[ [    Z(3^2),  Z(3^2)^5 ],
  [  Z(3^2)^5,    Z(3^2) ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DefaultField( Flat(M) );</span>
GF(3^2)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">HCFM := HorizontalConversionFieldMat(M, GF(9));; PrintArray(HCFM);</span>
[ [  0*Z(3),  Z(3)^0,  0*Z(3),    Z(3) ],
  [  Z(3)^0,  Z(3)^0,    Z(3),    Z(3) ],
  [  0*Z(3),    Z(3),  0*Z(3),  Z(3)^0 ],
  [    Z(3),    Z(3),  Z(3)^0,  Z(3)^0 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DefaultField( Flat(HCFM) );</span>
GF(3) 
</pre></div>

<p>A similar function is <code class="code">VerticalConversionFieldMat</code> (see <code class="func">VerticalConversionFieldMat</code> (<a href="chap7.html#X7B68119F85E9EC6D"><span class="RefLink">7.3-9</span></a>)).</p>

<p><a id="X804AAFF2867080F7" name="X804AAFF2867080F7"></a></p>

<h5>7.3-11 MOLS</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MOLS</code>( <var class="Arg">q</var>[, <var class="Arg">n</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">MOLS</code> returns a list of <var class="Arg">n</var> <em>Mutually Orthogonal Latin Squares</em> (MOLS). A <em>Latin square</em> of order <var class="Arg">q</var> is a <span class="SimpleMath">q× q</span> matrix whose entries are from a set <span class="SimpleMath">F_q</span> of <var class="Arg">q</var> distinct symbols (<strong class="pkg">GUAVA</strong> uses the integers from <span class="SimpleMath">0</span> to <var class="Arg">q</var>) such that each row and each column of the matrix contains each symbol exactly once.</p>

<p>A set of Latin squares is a set of MOLS if and only if for each pair of Latin squares in this set, every ordered pair of elements that are in the same position in these matrices occurs exactly once.</p>

<p><var class="Arg">n</var> must be less than <var class="Arg">q</var>. If <var class="Arg">n</var> is omitted, two MOLS are returned. If <var class="Arg">q</var> is not a prime power, at most <span class="SimpleMath">2</span> MOLS can be created. For all values of <var class="Arg">q</var> with <span class="SimpleMath">q &gt; 2</span> and <span class="SimpleMath">q ≠ 6</span>, a list of MOLS can be constructed. However, <strong class="pkg">GUAVA</strong> does not yet construct MOLS for <span class="SimpleMath">q≡ 2 mod 4</span>. If it is not possible to construct <var class="Arg">n</var> MOLS, the function returns `false'.</p>

<p>MOLS are used to create <var class="Arg">q</var>-ary codes (see <code class="func">MOLSCode</code> (<a href="chap5.html#X81B7EE4279398F67"><span class="RefLink">5.1-4</span></a>)).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M := MOLS( 4, 3 );;PrintArray( M[1] );</span>
[ [  0,  1,  2,  3 ],
  [  1,  0,  3,  2 ],
  [  2,  3,  0,  1 ],
  [  3,  2,  1,  0 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrintArray( M[2] );</span>
[ [  0,  2,  3,  1 ],
  [  1,  3,  2,  0 ],
  [  2,  0,  1,  3 ],
  [  3,  1,  0,  2 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrintArray( M[3] );</span>
[ [  0,  3,  1,  2 ],
  [  1,  2,  0,  3 ],
  [  2,  1,  3,  0 ],
  [  3,  0,  2,  1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MOLS( 12, 3 );</span>
false 
</pre></div>

<p><a id="X7F34306B81DC2776" name="X7F34306B81DC2776"></a></p>

<h5>7.3-12 IsLatinSquare</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsLatinSquare</code>( <var class="Arg">M</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">IsLatinSquare</code> determines if a matrix <var class="Arg">M</var> is a Latin square. For a Latin square of size <span class="SimpleMath">n× n</span>, each row and each column contains all the integers <span class="SimpleMath">1,dots,n</span> exactly once.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsLatinSquare([[1,2],[2,1]]);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsLatinSquare([[1,2,3],[2,3,1],[1,3,2]]);</span>
false 
</pre></div>

<p><a id="X81B9B40B7B2D97D5" name="X81B9B40B7B2D97D5"></a></p>

<h5>7.3-13 AreMOLS</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AreMOLS</code>( <var class="Arg">L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">AreMOLS</code> determines if <var class="Arg">L</var> is a list of mutually orthogonal Latin squares (MOLS). For each pair of Latin squares in this list, the function checks if each ordered pair of elements that are in the same position in these matrices occurs exactly once. The function <code class="code">MOLS</code> creates MOLS (see <code class="func">MOLS</code> (<a href="chap7.html#X804AAFF2867080F7"><span class="RefLink">7.3-11</span></a>)).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M := MOLS(4,2);</span>
[ [ [ 0, 1, 2, 3 ], [ 1, 0, 3, 2 ], [ 2, 3, 0, 1 ], [ 3, 2, 1, 0 ] ],
  [ [ 0, 2, 3, 1 ], [ 1, 3, 2, 0 ], [ 2, 0, 1, 3 ], [ 3, 1, 0, 2 ] ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AreMOLS(M);</span>
true 
</pre></div>

<p><a id="X7AB5E5CE7FDF7132" name="X7AB5E5CE7FDF7132"></a></p>

<h4>7.4 <span class="Heading">
Some functions related to the norm of a code
</span></h4>

<p>In this section, some functions that can be used to compute the norm of a code and to decide upon its normality are discussed. Typically, these are applied to binary linear codes. The definitions of this section were introduced in Graham and Sloane <a href="chapBib.html#biBGS85">[GS85]</a>.</p>

<p><a id="X8032E53078264ABB" name="X8032E53078264ABB"></a></p>

<h5>7.4-1 CoordinateNorm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CoordinateNorm</code>( <var class="Arg">C</var>, <var class="Arg">coord</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">CoordinateNorm</code> returns the norm of <var class="Arg">C</var> with respect to coordinate <var class="Arg">coord</var>. If <span class="SimpleMath">C_a = { c ∈ C | c_coord = a }</span>, then the norm of <var class="Arg">C</var> with respect to <var class="Arg">coord</var> is defined as</p>

<p class="pcenter">
\max_{v \in GF(q)^n} \sum_{a=1}^q d(x,C_a),
</p>

<p>with the convention that <span class="SimpleMath">d(x,C_a) = n</span> if <span class="SimpleMath">C_a</span> is empty.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CoordinateNorm( HammingCode( 3, GF(2) ), 3 );</span>
3 
</pre></div>

<p><a id="X7ED2EF368203AF47" name="X7ED2EF368203AF47"></a></p>

<h5>7.4-2 CodeNorm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CodeNorm</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">CodeNorm</code> returns the norm of <var class="Arg">C</var>. The <em>norm</em> of a code is defined as the minimum of the norms for the respective coordinates of the code. In effect, for each coordinate <code class="code">CoordinateNorm</code> is called, and the minimum of the calculated numbers is returned.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CodeNorm( HammingCode( 3, GF(2) ) );</span>
3 
</pre></div>

<p><a id="X7D24F8BF7F9A7BF1" name="X7D24F8BF7F9A7BF1"></a></p>

<h5>7.4-3 IsCoordinateAcceptable</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsCoordinateAcceptable</code>( <var class="Arg">C</var>, <var class="Arg">coord</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">IsCoordinateAcceptable</code> returns `true' if coordinate <var class="Arg">coord</var> of <var class="Arg">C</var> is acceptable. A coordinate is called <em>acceptable</em> if the norm of the code with respect to that coordinate is not more than two times the covering radius of the code plus one.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsCoordinateAcceptable( HammingCode( 3, GF(2) ), 3 );</span>
true 
</pre></div>

<p><a id="X87039FD179AD3009" name="X87039FD179AD3009"></a></p>

<h5>7.4-4 GeneralizedCodeNorm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GeneralizedCodeNorm</code>( <var class="Arg">C</var>, <var class="Arg">subcode1</var>, <var class="Arg">subscode2</var>, <var class="Arg">...</var>, <var class="Arg">subcodek</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">GeneralizedCodeNorm</code> returns the <var class="Arg">k</var>-norm of <var class="Arg">C</var> with respect to <var class="Arg">k</var> subcodes.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c := RepetitionCode( 7, GF(2) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ham := HammingCode( 3, GF(2) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">d := EvenWeightSubcode( ham );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">e := ConstantWeightSubcode( ham, 3 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GeneralizedCodeNorm( ham, c, d, e );</span>
4 
</pre></div>

<p><a id="X80283A2F7C8101BD" name="X80283A2F7C8101BD"></a></p>

<h5>7.4-5 IsNormalCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsNormalCode</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">IsNormalCode</code> returns `true' if <var class="Arg">C</var> is normal. A code is called <em>normal</em> if the norm of the code is not more than two times the covering radius of the code plus one. Almost all codes are normal, however some (non-linear) abnormal codes have been found.</p>

<p>Often, it is difficult to find out whether a code is normal, because it involves computing the covering radius. However, <code class="code">IsNormalCode</code> uses much information from the literature (in particular, <a href="chapBib.html#biBGS85">[GS85]</a>) about normality for certain code parameters.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsNormalCode( HammingCode( 3, GF(2) ) );</span>
true 
</pre></div>

<p><a id="X8308D685809A4E2F" name="X8308D685809A4E2F"></a></p>

<h4>7.5 <span class="Heading">
Miscellaneous functions
</span></h4>

<p>In this section we describe several vector space functions <strong class="pkg">GUAVA</strong> uses for constructing codes or performing calculations with codes.</p>

<p>In this section, some new miscellaneous functions are described, including weight enumerators, the MacWilliams-transform and affinity and almost affinity of codes.</p>

<p><a id="X871286437DE7A6A4" name="X871286437DE7A6A4"></a></p>

<h5>7.5-1 CodeWeightEnumerator</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CodeWeightEnumerator</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">CodeWeightEnumerator</code> returns a polynomial of the following form:</p>

<p class="pcenter">
f(x) = \sum_{i=0}^{n} A_i x^i,
</p>

<p>where <span class="SimpleMath">A_i</span> is the number of codewords in <var class="Arg">C</var> with weight <span class="SimpleMath">i</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CodeWeightEnumerator( ElementsCode( [ [ 0,0,0 ], [ 0,0,1 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 0,1,1 ], [ 1,1,1 ] ], GF(2) ) );</span>
x^3 + x^2 + x + 1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CodeWeightEnumerator( HammingCode( 3, GF(2) ) );</span>
x^7 + 7*x^4 + 7*x^3 + 1 
</pre></div>

<p><a id="X84DA928083B103A0" name="X84DA928083B103A0"></a></p>

<h5>7.5-2 CodeDistanceEnumerator</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CodeDistanceEnumerator</code>( <var class="Arg">C</var>, <var class="Arg">w</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">CodeDistanceEnumerator</code> returns a polynomial of the following form:</p>

<p class="pcenter">
f(x) = \sum_{i=0}^{n} B_i x^i,
</p>

<p>where <span class="SimpleMath">B_i</span> is the number of codewords with distance <span class="SimpleMath">i</span> to <var class="Arg">w</var>.</p>

<p>If <var class="Arg">w</var> is a codeword, then <code class="code">CodeDistanceEnumerator</code> returns the same polynomial as <code class="code">CodeWeightEnumerator</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CodeDistanceEnumerator( HammingCode( 3, GF(2) ),[0,0,0,0,0,0,1] );</span>
x^6 + 3*x^5 + 4*x^4 + 4*x^3 + 3*x^2 + x
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CodeDistanceEnumerator( HammingCode( 3, GF(2) ),[1,1,1,1,1,1,1] );</span>
x^7 + 7*x^4 + 7*x^3 + 1 # `[1,1,1,1,1,1,1]' $\in$ `HammingCode( 3, GF(2 ) )'
</pre></div>

<p><a id="X84B2BE66780EFBF9" name="X84B2BE66780EFBF9"></a></p>

<h5>7.5-3 CodeMacWilliamsTransform</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CodeMacWilliamsTransform</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">CodeMacWilliamsTransform</code> returns a polynomial of the following form:</p>

<p class="pcenter">
f(x) = \sum_{i=0}^{n} C_i x^i,
</p>

<p>where <span class="SimpleMath">C_i</span> is the number of codewords with weight <span class="SimpleMath">i</span> in the <em>dual</em> code of <var class="Arg">C</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CodeMacWilliamsTransform( HammingCode( 3, GF(2) ) );</span>
7*x^4 + 1 
</pre></div>

<p><a id="X7903286078F8051B" name="X7903286078F8051B"></a></p>

<h5>7.5-4 CodeDensity</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CodeDensity</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">CodeDensity</code> returns the <em>density</em> of <var class="Arg">C</var>. The density of a code is defined as</p>

<p class="pcenter">
\frac{M \cdot V_q(n,t)}{q^n},
</p>

<p>where <span class="SimpleMath">M</span> is the size of the code, <span class="SimpleMath">V_q(n,t)</span> is the size of a sphere of radius <span class="SimpleMath">t</span> in <span class="SimpleMath">GF(q^n)</span> (which may be computed using <code class="code">SphereContent</code>), <span class="SimpleMath">t</span> is the covering radius of the code and <span class="SimpleMath">n</span> is the length of the code.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CodeDensity( HammingCode( 3, GF(2) ) );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CodeDensity( ReedMullerCode( 1, 4 ) );</span>
14893/2048 
</pre></div>

<p><a id="X85303BAE7BD46D81" name="X85303BAE7BD46D81"></a></p>

<h5>7.5-5 SphereContent</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SphereContent</code>( <var class="Arg">n</var>, <var class="Arg">t</var>, <var class="Arg">F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">SphereContent</code> returns the content of a ball of radius <var class="Arg">t</var> around an arbitrary element of the vectorspace <span class="SimpleMath">F^n</span>. This is the cardinality of the set of all elements of <span class="SimpleMath">F^n</span> that are at distance (see <code class="func">DistanceCodeword</code> (<a href="chap3.html#X7CDA1B547D55E6FB"><span class="RefLink">3.6-2</span></a>) less than or equal to <var class="Arg">t</var> from an element of <span class="SimpleMath">F^n</span>.</p>

<p>In the context of codes, the function is used to determine if a code is perfect. A code is <em>perfect</em> if spheres of radius <span class="SimpleMath">t</span> around all codewords partition the whole ambient vector space, where <em>t</em> is the number of errors the code can correct.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SphereContent( 15, 0, GF(2) );</span>
1    # Only one word with distance 0, which is the word itself
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SphereContent( 11, 3, GF(4) );</span>
4984
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C := HammingCode(5);</span>
a linear [31,26,3]1 Hamming (5,2) code over GF(2)
#the minimum distance is 3, so the code can correct one error
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">( SphereContent( 31, 1, GF(2) ) * Size(C) ) = 2 ^ 31;</span>
true 
</pre></div>

<p><a id="X7ACDC5377CD17451" name="X7ACDC5377CD17451"></a></p>

<h5>7.5-6 Krawtchouk</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Krawtchouk</code>( <var class="Arg">k</var>, <var class="Arg">i</var>, <var class="Arg">n</var>, <var class="Arg">q</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">Krawtchouk</code> returns the Krawtchouk number <span class="SimpleMath">K_k(i)</span>. <var class="Arg">q</var> must be a prime power, <var class="Arg">n</var> must be a positive integer, <var class="Arg">k</var> must be a non-negative integer less then or equal to <var class="Arg">n</var> and <var class="Arg">i</var> can be any integer. (See <code class="func">KrawtchoukMat</code> (<a href="chap7.html#X82899B64802A4BCE"><span class="RefLink">7.3-1</span></a>)). This number is the value at <span class="SimpleMath">x=i</span> of the polynomial</p>

<p class="pcenter">
K_k^{n,q}(x)
=\sum_{j=0}^n (-1)^j(q-1)^{k-j}b(x,j)b(n-x,k-j),
</p>

<p>where $b(v,u)=u!/(v!(v-u)!)$ is the binomial coefficient if $u,v$ are integers. For more properties of these polynomials, see <a href="chapBib.html#biBMS83">[MS83]</a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Krawtchouk( 2, 0, 3, 2);</span>
3 
</pre></div>

<p><a id="X827E39957A87EB51" name="X827E39957A87EB51"></a></p>

<h5>7.5-7 PrimitiveUnityRoot</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PrimitiveUnityRoot</code>( <var class="Arg">F</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">PrimitiveUnityRoot</code> returns a primitive <var class="Arg">n</var>-th root of unity in an extension field of <var class="Arg">F</var>. This is a finite field element <span class="SimpleMath">a</span> with the property <span class="SimpleMath">a^n=1</span> in <var class="Arg">F</var>, and <var class="Arg">n</var> is the smallest integer such that this equality holds.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrimitiveUnityRoot( GF(2), 15 );</span>
Z(2^4)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">last^15;</span>
Z(2)^0
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrimitiveUnityRoot( GF(8), 21 );</span>
Z(2^6)^3 
</pre></div>

<p><a id="X78AEA40F7AD9D541" name="X78AEA40F7AD9D541"></a></p>

<h5>7.5-8 PrimitivePolynomialsNr</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PrimitivePolynomialsNr</code>( <var class="Arg">n</var>, <var class="Arg">F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">PrimitivePolynomialsNr</code> returns the number of irreducible polynomials over <span class="SimpleMath">F=GF(q)</span> of degree <var class="Arg">n</var> with (maximum) period <span class="SimpleMath">q^n-1</span>. (According to a theorem of S. Golomb, this is <span class="SimpleMath">ϕ(p^n-1)/n</span>.)</p>

<p>See also the GAP function <code class="code">RandomPrimitivePolynomial</code>, <code class="func">RandomPrimitivePolynomial</code> (<a href="chap8.html#X7ECC593583E68A6C"><span class="RefLink">8.2-2</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrimitivePolynomialsNr(3,4);</span>
12

</pre></div>

<p><a id="X7A2B54EF868AA752" name="X7A2B54EF868AA752"></a></p>

<h5>7.5-9 IrreduciblePolynomialsNr</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IrreduciblePolynomialsNr</code>( <var class="Arg">n</var>, <var class="Arg">F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">PrimitivePolynomialsNr</code> returns the number of irreducible polynomials over <span class="SimpleMath">F=GF(q)</span> of degree <var class="Arg">n</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IrreduciblePolynomialsNr(3,4);</span>
20

</pre></div>

<p><a id="X7B50D3417F6FD7C6" name="X7B50D3417F6FD7C6"></a></p>

<h5>7.5-10 MatrixRepresentationOfElement</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MatrixRepresentationOfElement</code>( <var class="Arg">a</var>, <var class="Arg">F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Here <var class="Arg">F</var> is either a finite extension of the ``base field'' <span class="SimpleMath">GF(p)</span> or of the rationals <span class="SimpleMath">Q}</span>, and <span class="SimpleMath">a∈ F</span>. The command <code class="code">MatrixRepresentationOfElement</code> returns a matrix representation of <var class="Arg">a</var> over the base field.</p>

<p>If the element <var class="Arg">a</var> is defined over the base field then it returns the corresponding <span class="SimpleMath">1× 1</span> matrix.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">a:=Random(GF(4));</span>
0*Z(2)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M:=MatrixRepresentationOfElement(a,GF(4));; Display(M);</span>
 .
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">a:=Random(GF(4));</span>
Z(2^2)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M:=MatrixRepresentationOfElement(a,GF(4));; Display(M);</span>
 . 1
 1 1
gap&gt;

</pre></div>

<p><a id="X7805D2BB7CE4D455" name="X7805D2BB7CE4D455"></a></p>

<h5>7.5-11 ReciprocalPolynomial</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ReciprocalPolynomial</code>( <var class="Arg">P</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">ReciprocalPolynomial</code> returns the <em>reciprocal</em> of polynomial <var class="Arg">P</var>. This is a polynomial with coefficients of <var class="Arg">P</var> in the reverse order. So if <span class="SimpleMath">P=a_0 + a_1 X + ... + a_n X^n</span>, the reciprocal polynomial is <span class="SimpleMath">P'=a_n + a_n-1 X + ... + a_0 X^n</span>.</p>

<p>This command can also be called using the syntax <code class="code">ReciprocalPolynomial( P , n )</code>. In this form, the number of coefficients of <var class="Arg">P</var> is assumed to be less than or equal to <span class="SimpleMath">n+1</span> (with zero coefficients added in the highest degrees, if necessary). Therefore, the reciprocal polynomial also has degree <span class="SimpleMath">n+1</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">P := UnivariatePolynomial( GF(3), Z(3)^0 * [1,0,1,2] );</span>
Z(3)^0+x_1^2-x_1^3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RecP := ReciprocalPolynomial( P );</span>
-Z(3)^0+x_1+x_1^3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ReciprocalPolynomial( RecP ) = P;</span>
true 
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">P := UnivariatePolynomial( GF(3), Z(3)^0 * [1,0,1,2] );</span>
Z(3)^0+x_1^2-x_1^3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ReciprocalPolynomial( P, 6 );</span>
-x_1^3+x_1^4+x_1^6
</pre></div>

<p><a id="X7AEA9F807E6FFEFF" name="X7AEA9F807E6FFEFF"></a></p>

<h5>7.5-12 CyclotomicCosets</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CyclotomicCosets</code>( <var class="Arg">q</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">CyclotomicCosets</code> returns the cyclotomic cosets of <span class="SimpleMath">q mod n</span>. <var class="Arg">q</var> and <var class="Arg">n</var> must be relatively prime. Each of the elements of the returned list is a list of integers that belong to one cyclotomic coset. A <span class="SimpleMath">q</span>-cyclotomic coset of <span class="SimpleMath">s mod n</span> is a set of the form <span class="SimpleMath">{s,sq,sq^2,...,sq^r-1}</span>, where <span class="SimpleMath">r</span> is the smallest positive integer such that <span class="SimpleMath">sq^r-s</span> is <span class="SimpleMath">0 mod n</span>. In other words, each coset contains all multiplications of the coset representative by <span class="SimpleMath">q mod n</span>. The coset representative is the smallest integer that isn't in the previous cosets.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CyclotomicCosets( 2, 15 );</span>
[ [ 0 ], [ 1, 2, 4, 8 ], [ 3, 6, 12, 9 ], [ 5, 10 ],
  [ 7, 14, 13, 11 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CyclotomicCosets( 7, 6 );</span>
[ [ 0 ], [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ] ] 
</pre></div>

<p><a id="X7A4EA98D794CF410" name="X7A4EA98D794CF410"></a></p>

<h5>7.5-13 WeightHistogram</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; WeightHistogram</code>( <var class="Arg">C</var>[, <var class="Arg">h</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>The function <code class="code">WeightHistogram</code> plots a histogram of weights in code <var class="Arg">C</var>. The maximum length of a column is <var class="Arg">h</var>. Default value for <var class="Arg">h</var> is <span class="SimpleMath">1/3</span> of the size of the screen. The number that appears at the top of the histogram is the maximum value of the list of weights.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">H := HammingCode(2, GF(5));</span>
a linear [6,4,3]1 Hamming (2,5) code over GF(5)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">WeightDistribution(H);</span>
[ 1, 0, 0, 80, 120, 264, 160 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">WeightHistogram(H);</span>
264----------------
               *
               *
               *
               *
               *  *
            *  *  *
         *  *  *  *
         *  *  *  *
+--------+--+--+--+--
0  1  2  3  4  5  6 
</pre></div>

<p><a id="X805DF25C84585FD6" name="X805DF25C84585FD6"></a></p>

<h5>7.5-14 MultiplicityInList</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MultiplicityInList</code>( <var class="Arg">L</var>, <var class="Arg">a</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This is a very simple list command which returns how many times a occurs in L. It returns 0 if a is not in L. (The GAP command <code class="code">Collected</code> does not quite handle this "extreme" case.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L:=[1,2,3,4,3,2,1,5,4,3,2,1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MultiplicityInList(L,1);</span>
3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MultiplicityInList(L,6);</span>
0
</pre></div>

<p><a id="X8072B0DA78FBE562" name="X8072B0DA78FBE562"></a></p>

<h5>7.5-15 MostCommonInList</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MostCommonInList</code>( <var class="Arg">L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Input: a list L</p>

<p>Output: an a in L which occurs at least as much as any other in L</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L:=[1,2,3,4,3,2,1,5,4,3,2,1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MostCommonInList(L);</span>
1
</pre></div>

<p><a id="X7C5407EF87849857" name="X7C5407EF87849857"></a></p>

<h5>7.5-16 RotateList</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RotateList</code>( <var class="Arg">L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Input: a list L</p>

<p>Output: a list L' which is the cyclic rotation of L (to the right)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L:=[1,2,3,4];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RotateList(L);</span>
[2,3,4,1]
</pre></div>

<p><a id="X85E526367878F72A" name="X85E526367878F72A"></a></p>

<h5>7.5-17 CirculantMatrix</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CirculantMatrix</code>( <var class="Arg">k</var>, <var class="Arg">L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Input: integer k, a list L of length n</p>

<p>Output: kxn matrix whose rows are cyclic rotations of the list L</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">k:=3; L:=[1,2,3,4];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M:=CirculantMatrix(k,L);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display(M);</span>
</pre></div>

<p><a id="X7969103F7A8598F9" name="X7969103F7A8598F9"></a></p>

<h4>7.6 <span class="Heading">
Miscellaneous polynomial functions
</span></h4>

<p>In this section we describe several multivariate polynomial GAP functions <strong class="pkg">GUAVA</strong> uses for constructing codes or performing calculations with codes.</p>

<p><a id="X84D51EBB784E7C5D" name="X84D51EBB784E7C5D"></a></p>

<h5>7.6-1 MatrixTransformationOnMultivariatePolynomial </h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MatrixTransformationOnMultivariatePolynomial </code>( <var class="Arg">A</var>, <var class="Arg">f</var>, <var class="Arg">R</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><var class="Arg">A</var> is an <span class="SimpleMath">n× n</span> matrix with entries in a field <span class="SimpleMath">F</span>, <var class="Arg">R</var> is a polynomial ring of <span class="SimpleMath">n</span> variables, say <span class="SimpleMath">F[x_1,...,x_n]</span>, and <var class="Arg">f</var> is a polynomial in <var class="Arg">R</var>. Returns the composition <span class="SimpleMath">f∘ A</span>.</p>

<p><a id="X80433A4B792880EF" name="X80433A4B792880EF"></a></p>

<h5>7.6-2 DegreeMultivariatePolynomial</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DegreeMultivariatePolynomial</code>( <var class="Arg">f</var>, <var class="Arg">R</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This command takes two arguments, <var class="Arg">f</var>, a multivariate polynomial, and <var class="Arg">R</var> a polynomial ring over a field <span class="SimpleMath">F</span> containing <var class="Arg">f</var>, say <span class="SimpleMath">R=F[x_1,x_2,...,x_n]</span>. The output is simply the maximum degrees of all the monomials occurring in <var class="Arg">f</var>.</p>

<p>This command can be used to compute the degree of an affine plane curve.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F:=GF(11);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R2:=PolynomialRing(F,2);</span>
PolynomialRing(..., [ x_1, x_2 ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">vars:=IndeterminatesOfPolynomialRing(R2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">x:=vars[1];; y:=vars[2];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poly:=y^2-x*(x^2-1);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DegreeMultivariatePolynomial(poly,R2);</span>
3

</pre></div>

<p><a id="X83F44E397C56F2E0" name="X83F44E397C56F2E0"></a></p>

<h5>7.6-3 DegreesMultivariatePolynomial</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DegreesMultivariatePolynomial</code>( <var class="Arg">f</var>, <var class="Arg">R</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns a list of information about the multivariate polynomial <var class="Arg">f</var>. Nice for other programs but mostly unreadable by GAP users.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F:=GF(11);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R2:=PolynomialRing(F,2);</span>
PolynomialRing(..., [ x_1, x_2 ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">vars:=IndeterminatesOfPolynomialRing(R2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">x:=vars[1];; y:=vars[2];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poly:=y^2-x*(x^2-1);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DegreesMultivariatePolynomial(poly,R2);</span>
[ [ [ x_1, x_1, 1 ], [ x_1, x_2, 0 ] ], [ [ x_2^2, x_1, 0 ], [ x_2^2, x_2, 2 ] ],
  [ [ x_1^3, x_1, 3 ], [ x_1^3, x_2, 0 ] ] ]
gap&gt;

</pre></div>

<p><a id="X7E9021697A61A60F" name="X7E9021697A61A60F"></a></p>

<h5>7.6-4 CoefficientMultivariatePolynomial</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CoefficientMultivariatePolynomial</code>( <var class="Arg">f</var>, <var class="Arg">var</var>, <var class="Arg">power</var>, <var class="Arg">R</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The command <code class="code">CoefficientMultivariatePolynomial</code> takes four arguments: a multivariant polynomial <var class="Arg">f</var>, a variable name <var class="Arg">var</var>, an integer <var class="Arg">power</var>, and a polynomial ring <var class="Arg">R</var> containing <var class="Arg">f</var>. For example, if <var class="Arg">f</var> is a multivariate polynomial in <span class="SimpleMath">R</span> = <span class="SimpleMath">F</span>[<span class="SimpleMath">x_1,x_2,...,x_n</span>] then <var class="Arg">var</var> must be one of the <span class="SimpleMath">x_i</span>. The output is the coefficient of <span class="SimpleMath">x_i^power</span> in <var class="Arg">f</var>.</p>

<p>(Not sure if <span class="SimpleMath">F</span> needs to be a field in fact ...)</p>

<p>Related to the GAP command <code class="code">PolynomialCoefficientsPolynomial</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F:=GF(11);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R2:=PolynomialRing(F,2);</span>
PolynomialRing(..., [ x_1, x_2 ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">vars:=IndeterminatesOfPolynomialRing(R2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">x:=vars[1];; y:=vars[2];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poly:=y^2-x*(x^2-1);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PolynomialCoefficientsOfPolynomial(poly,x);</span>
[ x_2^2, Z(11)^0, 0*Z(11), -Z(11)^0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PolynomialCoefficientsOfPolynomial(poly,y);</span>
[ -x_1^3+x_1, 0*Z(11), Z(11)^0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CoefficientMultivariatePolynomial(poly,y,0,R2);</span>
-x_1^3+x_1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CoefficientMultivariatePolynomial(poly,y,1,R2);</span>
0*Z(11)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CoefficientMultivariatePolynomial(poly,y,2,R2);</span>
Z(11)^0
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CoefficientMultivariatePolynomial(poly,x,0,R2);</span>
x_2^2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CoefficientMultivariatePolynomial(poly,x,1,R2);</span>
Z(11)^0
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CoefficientMultivariatePolynomial(poly,x,2,R2);</span>
0*Z(11)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CoefficientMultivariatePolynomial(poly,x,3,R2);</span>
-Z(11)^0

</pre></div>

<p><a id="X79E76B6F7D177E27" name="X79E76B6F7D177E27"></a></p>

<h5>7.6-5 SolveLinearSystem</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SolveLinearSystem</code>( <var class="Arg">L</var>, <var class="Arg">vars</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Input: <var class="Arg">L</var> is a list of linear forms in the variables <var class="Arg">vars</var>.</p>

<p>Output: the solution of the system, if its unique.</p>

<p>The procedure is straightforward: Find the associated matrix <span class="SimpleMath">A</span>, find the "constant vector" <span class="SimpleMath">b</span>, and solve <span class="SimpleMath">A*v=b</span>. No error checking is performed.</p>

<p>Related to the GAP command <code class="code">SolutionMat( A, b )</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F:=GF(11);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R2:=PolynomialRing(F,2);</span>
PolynomialRing(..., [ x_1, x_2 ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">vars:=IndeterminatesOfPolynomialRing(R2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">x:=vars[1];; y:=vars[2];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=3*y-3*x+1;; g:=-5*y+2*x-7;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">soln:=SolveLinearSystem([f,g],[x,y]);</span>
[ Z(11)^3, Z(11)^2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Value(f,[x,y],soln); # checking okay</span>
0*Z(11)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Value(g,[x,y],col); # checking okay</span>
0*Z(11)

</pre></div>

<p><a id="X80171AA687FFDC70" name="X80171AA687FFDC70"></a></p>

<h5>7.6-6 GuavaVersion</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GuavaVersion</code>(  )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns the current version of Guava. Same as <code class="code">guava\_version()</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GuavaVersion();</span>
"3.11"

</pre></div>

<p><a id="X7EBBE86D85CC90C0" name="X7EBBE86D85CC90C0"></a></p>

<h5>7.6-7 ZechLog</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ZechLog</code>( <var class="Arg">x</var>, <var class="Arg">b</var>, <var class="Arg">F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns the Zech log of x to base b, ie the i such that $x+1=b^i$, so $y+z=y(1+z/y)=b^k$, where k=Log(y,b)+ZechLog(z/y,b) and b must be a primitive element of F.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F:=GF(11);; l := One(F);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ZechLog(2*l,8*l,F);</span>
-24
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">8*l+l;(2*l)^(-24);</span>
Z(11)^6
Z(11)^6

</pre></div>

<p><a id="X7C8C1E6A7E3497F0" name="X7C8C1E6A7E3497F0"></a></p>

<h5>7.6-8 CoefficientToPolynomial</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CoefficientToPolynomial</code>( <var class="Arg">coeffs</var>, <var class="Arg">R</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The function <code class="code">CoefficientToPolynomial</code> returns the degree <span class="SimpleMath">d-1</span> polynomial <span class="SimpleMath">c_0+c_1x+...+c_d-1x^d-1</span>, where <var class="Arg">coeffs</var> is a list of elements of a field, <span class="SimpleMath">coeffs={ c_0,...,c_d-1}</span>, and <var class="Arg">R</var> is a univariate polynomial ring.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F:=GF(11);</span>
GF(11)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R1:=PolynomialRing(F,["a"]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">var1:=IndeterminatesOfPolynomialRing(R1);; a:=var1[1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">coeffs:=Z(11)^0*[1,2,3,4];</span>
[ Z(11)^0, Z(11), Z(11)^8, Z(11)^2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CoefficientToPolynomial(coeffs,R1);</span>
Z(11)^2*a^3+Z(11)^8*a^2+Z(11)*a+Z(11)^0
</pre></div>

<p><a id="X8431985183B63BB7" name="X8431985183B63BB7"></a></p>

<h5>7.6-9 DegreesMonomialTerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DegreesMonomialTerm</code>( <var class="Arg">m</var>, <var class="Arg">R</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The function <code class="code">DegreesMonomialTerm</code> returns the list of degrees to which each variable in the multivariate polynomial ring <var class="Arg">R</var> occurs in the monomial <var class="Arg">m</var>, where <var class="Arg">coeffs</var> is a list of elements of a field.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F:=GF(11);</span>
GF(11)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R1:=PolynomialRing(F,["a"]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">var1:=IndeterminatesOfPolynomialRing(R1);; a:=var1[1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">b:=X(F,"b",var1);</span>
b
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">var2:=Concatenation(var1,[b]);</span>
[ a, b ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R2:=PolynomialRing(F,var2);</span>
PolynomialRing(..., [ a, b ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c:=X(F,"c",var2);</span>
c
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">var3:=Concatenation(var2,[c]);</span>
[ a, b, c ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R3:=PolynomialRing(F,var3);</span>
PolynomialRing(..., [ a, b, c ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m:=b^3*c^7;</span>
b^3*c^7
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DegreesMonomialTerm(m,R3);</span>
[ 0, 3, 7 ]
</pre></div>

<p><a id="X860EF39B841380A1" name="X860EF39B841380A1"></a></p>

<h5>7.6-10 DivisorsMultivariatePolynomial</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DivisorsMultivariatePolynomial</code>( <var class="Arg">f</var>, <var class="Arg">R</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The function <code class="code">DivisorsMultivariatePolynomial</code> returns the list of polynomial divisors of <var class="Arg">f</var> in the multivariate polynomial ring <var class="Arg">R</var> with coefficients in a field. This program uses a simple but slow algorithm (see Joachim von zur Gathen, Jürgen Gerhard, <a href="chapBib.html#biBGG03">[GG03]</a>, exercise 16.10) which first converts the multivariate polynomial <var class="Arg">f</var> to an associated univariate polynomial <span class="SimpleMath">f^*</span>, then <code class="code">Factors</code> <span class="SimpleMath">f^*</span>, and finally converts these univariate factors back into the multivariate polynomial factors of <var class="Arg">f</var>. Since <code class="code">Factors</code> is non-deterministic, <code class="code">DivisorsMultivariatePolynomial</code> is non-deterministic as well.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R2:=PolynomialRing(GF(3),["x1","x2"]);</span>
PolynomialRing(..., [ x1, x2 ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">vars:=IndeterminatesOfPolynomialRing(R2);</span>
[ x1, x2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">x2:=vars[2];</span>
x2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">x1:=vars[1];</span>
x1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=x1^3+x2^3;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DivisorsMultivariatePolynomial(f,R2);</span>
[ x1+x2, x1+x2, x1+x2 ]
</pre></div>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap6.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap8.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>