This file is indexed.

/usr/share/gap/pkg/grape/htm/CHAP005.htm is in gap-grape 4r7+ds-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
<html><head><title>[grape] 5 Some special vertex subsets of a graph</title></head>
<body text="#000000" bgcolor="#ffffff">
[<a href = "chapters.htm">Up</a>] [<a href ="CHAP004.htm">Previous</a>] [<a href ="CHAP006.htm">Next</a>] [<a href = "theindex.htm">Index</a>]
<h1>5 Some special vertex subsets of a graph</h1><p>
<P>
<H3>Sections</H3>
<oL>
<li> <A HREF="CHAP005.htm#SECT001">ConnectedComponent</a>
<li> <A HREF="CHAP005.htm#SECT002">ConnectedComponents</a>
<li> <A HREF="CHAP005.htm#SECT003">Bicomponents</a>
<li> <A HREF="CHAP005.htm#SECT004">DistanceSet</a>
<li> <A HREF="CHAP005.htm#SECT005">Layers</a>
<li> <A HREF="CHAP005.htm#SECT006">IndependentSet</a>
</ol><p>
<p>
This chapter describes functions to determine certain special vertex
subsets of a graph.
<p>
<p>
<h2><a name="SECT001">5.1 ConnectedComponent</a></h2>
<p><p>
<a name = "SSEC001.1"></a>
<li><code>ConnectedComponent( </code><var>gamma</var><code>, </code><var>v</var><code> )</code>
<p>
This function  returns the set  of all vertices  in <var>gamma</var> which  can be
reached by a path starting at the vertex  <var>v</var>.  The graph <var>gamma</var> must be
simple.
<p>
See also <a href="CHAP005.htm#SSEC002.1">ConnectedComponents</a>.
<p>
<pre>
gap&gt; ConnectedComponent( NullGraph( Group((1,2)) ), 2 );
[ 2 ]
gap&gt; ConnectedComponent( JohnsonGraph(4,2), 2 );
[ 1, 2, 3, 4, 5, 6 ] 
</pre>
<p>
<p>
<h2><a name="SECT002">5.2 ConnectedComponents</a></h2>
<p><p>
<a name = "SSEC002.1"></a>
<li><code>ConnectedComponents( </code><var>gamma</var><code> )</code>
<p>
This  function returns  a  list  of  the  vertex  sets  of  the connected
components of <var>gamma</var>, which must be a simple graph.
<p>
See also <a href="CHAP005.htm#SSEC001.1">ConnectedComponent</a>.
<p>
<pre>
gap&gt; ConnectedComponents( NullGraph( Group((1,2,3,4)) ) );
[ [ 1 ], [ 2 ], [ 3 ], [ 4 ] ]
gap&gt; ConnectedComponents( JohnsonGraph(4,2) );
[ [ 1, 2, 3, 4, 5, 6 ] ] 
</pre>
<p>
<p>
<h2><a name="SECT003">5.3 Bicomponents</a></h2>
<p><p>
<a name = "SSEC003.1"></a>
<li><code>Bicomponents( </code><var>gamma</var><code> )</code>
<p>
If the graph  <var>gamma</var>, which must be simple,  is bipartite, this function
returns  a length 2 list  of  bicomponents or parts of <var>gamma</var>, otherwise
the empty list is returned.
<p>
<strong>Note</strong> If <var>gamma</var> is bipartite but not connected, then its set of
bicomponents is not uniquely determined.  
<p>
See also <a href="CHAP003.htm#SSEC019.1">IsBipartite</a>.
<p>
<pre>
gap&gt; Bicomponents( NullGraph(SymmetricGroup(4)) );
[ [ 1 .. 3 ], [ 4 ] ]
gap&gt; Bicomponents( JohnsonGraph(4,2) );
[  ]
gap&gt; Bicomponents( BipartiteDouble( JohnsonGraph(4,2) ) );
[ [ 1, 2, 3, 4, 5, 6 ], [ 7, 8, 9, 10, 11, 12 ] ]
</pre>
<p>
<p>
<h2><a name="SECT004">5.4 DistanceSet</a></h2>
<p><p>
<a name = "SSEC004.1"></a>
<li><code>DistanceSet( </code><var>gamma</var><code>, </code><var>distances</var><code>, </code><var>V</var><code> )</code>
<li><code>DistanceSet( </code><var>gamma</var><code>, </code><var>distances</var><code>, </code><var>V</var><code>, </code><var>G</var><code> )</code>
<p>
Let <var>V</var> be a vertex or a nonempty list of vertices of <var>gamma</var>.
This function returns the set of vertices <i>w</i> of <var>gamma</var>, such that
<i>d</i>(<i>V</i> ,<i>w</i>) is in <var>distances</var> (a list or singleton distance).
<p>
The optional  parameter <var>G</var>, if  present, is assumed to be  a subgroup of
\Aut(<i>gamma</i> )  fixing <var>V</var> setwise.  Including  such a <var>G</var> can speed  up
the function.
<p>
See also <a href="CHAP003.htm#SSEC015.1">Distance</a> and <a href="CHAP006.htm#SSEC002.1">DistanceSetInduced</a>.
<p>
<pre>
gap&gt; DistanceSet( JohnsonGraph(4,2), 1, [1,6] );
[ 2, 3, 4, 5 ] 
</pre>
<p>
<p>
<h2><a name="SECT005">5.5 Layers</a></h2>
<p><p>
<a name = "SSEC005.1"></a>
<li><code>Layers( </code><var>gamma</var><code>, </code><var>V</var><code> )</code>
<li><code>Layers( </code><var>gamma</var><code>, </code><var>V</var><code>, </code><var>G</var><code> )</code>
<p>
Let <var>V</var> be a vertex or a nonempty list of vertices of <var>gamma</var>.  This
function returns a list whose <i>i</i>-th element is the set of vertices of
<var>gamma</var> at distance <i>i</i>&#8722;1 from <var>V</var>.
<p>
The optional  parameter  <var>G</var>, if present, is assumed to  be a subgroup of
\Aut(<i>gamma</i> ) which fixes <var>V</var>  setwise.  Including such a <var>G</var> can speed
up the function.
<p>
See also <a href="CHAP003.htm#SSEC015.1">Distance</a>.
<p>
<pre>
gap&gt; Layers( JohnsonGraph(4,2), 6 );
[ [ 6 ], [ 2, 3, 4, 5 ], [ 1 ] ] 
</pre>
<p>
<p>
<h2><a name="SECT006">5.6 IndependentSet</a></h2>
<p><p>
<a name = "SSEC006.1"></a>
<li><code>IndependentSet( </code><var>gamma</var><code> )</code>
<li><code>IndependentSet( </code><var>gamma</var><code>, </code><var>indset</var><code> )</code>
<li><code>IndependentSet( </code><var>gamma</var><code>, </code><var>indset</var><code>, </code><var>forbidden</var><code> )</code>
<p>
Returns a (hopefully large) independent set of the graph <var>gamma</var>, which
must be simple.  An <strong>independent set</strong> of <var>gamma</var> is a set of vertices
of <var>gamma</var>, no two of which are joined by an edge.  At present, a
greedy algorithm is used.  The returned independent set will contain
the (assumed) independent set <var>indset</var> (default: <code>[]</code>), and not contain
any element of <var>forbidden</var> (default: <code>[]</code>, in which case the returned
independent set is maximal).
<p>
An error is signalled if <var>indset</var> and <var>forbidden</var> have non-trivial
intersection.
<p>
See also <a href="CHAP007.htm#SSEC002.1">CompleteSubgraphs</a> and <a href="CHAP007.htm#SSEC003.1">CompleteSubgraphsOfGivenSize</a>, which
can be used on the complement graph of <var>gamma</var> to look seriously for
independent sets.
<p>
<pre>
gap&gt; IndependentSet( JohnsonGraph(4,2), [3] );
[ 3, 4 ] 
</pre>
<p>
[<a href = "chapters.htm">Up</a>] [<a href ="CHAP004.htm">Previous</a>] [<a href ="CHAP006.htm">Next</a>] [<a href = "theindex.htm">Index</a>]
<P>
<address>grape manual<br>January 2016 (Debian 4r7+ds-3)
</address></body></html>