This file is indexed.

/usr/share/zenlisp/rmath.l is in zenlisp 2013.11.22-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
; zenlisp rational math functions
; By Nils M Holm, 2007, 2008
; Feel free to copy, share, and modify this code.
; See the file LICENSE for details.

; would use REQUIRE, but REQUIRE is in BASE
(cond ((defined 'base) :f)
      (t (load base)))

(define rmath :t)

(require 'imath)

(define (numerator x)
  (reverse (cdr (memq '/ (reverse x)))))

(define (denominator x) (cdr (memq '/ x)))

(define (rational-p x)
  (and (listp x)
       (memq '/ x)
       (integer-p (numerator x))
       (integer-p (denominator x))))

(define (r-number-p x)
  (or (integer-p x)
      (rational-p x)))

(define (make-rational num den)
  (append num '#/ den))

(define (rational x)
  (cond ((rational-p x) x)
        (t (make-rational x '#1))))

(define (r-zero x)
  (cond ((rational-p x) (r= x '#0))
        (t (i-zero x))))

(define (r-one x)
  (cond ((rational-p x) (r= x '#1))
        (t (i-one x))))

(define (%least-terms x)
  (let ((cd (gcd (numerator x) (denominator x))))
    (cond ((r-one cd) x)
          (t (make-rational (quotient (numerator x) cd)
                            (quotient (denominator x) cd))))))

(define (%decay x)
  (cond ((r-one (denominator x))
          (numerator x))
        (t x)))

(define r-normalize
  (let ()
    (lambda (x)
      (letrec
        ((norm-sign (lambda (x)
          (let ((num (numerator x))
                (den (denominator x)))
            (let ((pos (eq (i-negative num)
                           (i-negative den))))
              (make-rational (cond (pos (i-abs num))
                                   (t (cons '- (i-abs num))))
                      (i-abs den)))))))
        (cond ((rational-p x)
                (%decay (%least-terms (norm-sign x))))
              (t (i-normalize x)))))))

(define (r-integer x)
  (let ((xlt (+ '#0 x)))
    (cond ((rational-p xlt)
            (bottom (list 'r-integer x)))
          (t xlt))))

(define (r-natural x)
  (i-natural (r-integer x)))

(define (r-abs x)
  (cond ((rational-p x)
          (make-rational (i-abs (numerator x))
                         (i-abs (denominator x))))
        (t (i-abs x))))

(define (%equalize a b)
  (let ((num-a (numerator a))
        (num-b (numerator b))
        (den-a (denominator a))
        (den-b (denominator b)))
    (let ((cd (gcd den-a den-b)))
      (cond
        ((r-one cd)
          (list (make-rational (i* num-a den-b)
                               (i* den-a den-b))
                (make-rational (i* num-b den-a)
                               (i* den-b den-a))))
        (t (list (make-rational (quotient (i* num-a den-b) cd)
                                (quotient (i* den-a den-b) cd))
                 (make-rational (quotient (i* num-b den-a) cd)
                                (quotient (i* den-b den-a) cd))))))))

(define r+
  (let ()
    (lambda (a b)
      (let ((factors (%equalize (rational a) (rational b)))
            (radd
              (lambda (a b)
                (r-normalize
                  (make-rational (i+ (numerator a) (numerator b))
                                 (denominator a))))))
        (radd (car factors) (cadr factors))))))

(define r-
  (let ()
    (lambda (a b)
      (let ((factors (%equalize (rational a) (rational b)))
            (rsub
              (lambda (a b)
                (r-normalize
                  (make-rational (i- (numerator a) (numerator b))
                                 (denominator a))))))
        (rsub (car factors) (cadr factors))))))

(define (r* a b)
  (let ((rmul
          (lambda (a b)
            (r-normalize
              (make-rational (i* (numerator a) (numerator b))
                             (i* (denominator a) (denominator b)))))))
    (rmul (rational a) (rational b))))

(define (r/ a b)
  (let ((rdiv
          (lambda (a b)
            (r-normalize
              (make-rational (i* (numerator a) (denominator b))
                             (i* (denominator a) (numerator b)))))))
    (cond ((r-zero b) (bottom (list 'r/ a b)))
          (t (rdiv (rational a) (rational b))))))

(define r<
  (let ()
    (lambda (a b)
      (let ((factors (%equalize (rational a) (rational b))))
        (i< (numerator (car factors))
            (numerator (cadr factors)))))))

(define (r> a b) (r< b a))

(define (r<= a b) (eq (r> a b) :f))

(define (r>= a b) (eq (r< a b) :f))

(define r=
  (let ()
    (lambda (a b)
      (cond ((or (rational-p a) (rational-p b))
              (equal (%least-terms (rational a))
                     (%least-terms (rational b))))
            (t (i= a b))))))

(define (r-expt x y)
  (letrec
    ((rx (cond ((i-negative (r-integer y))
                 (r/ '#1 (rational x)))
               (t (rational x))))
     (square
       (lambda (x)
         (r* x x)))
     (exp
       (lambda (x y)
         (cond ((r-zero y) '#1)
               ((even y)
                 (square (exp x (quotient y '#2))))
               (t (r* x (square (exp x (quotient y '#2)))))))))
    (exp rx (i-abs (r-integer y)))))

(define (r-negative x)
  (cond ((rational-p x)
          (i-negative (numerator (r-normalize x))))
        (t (i-negative x))))

(define (r-negate x)
  (cond ((rational-p x)
          (let ((nx (r-normalize x)))
            (make-rational (i-negate (numerator nx))
                           (denominator nx))))
        (t (i-negate x))))

(define (r-max . a) (apply limit r> a))

(define (r-min . a) (apply limit r< a))

(define (r-sqrt square precision)
  (let ((e (make-rational '#1 (r-expt '#10 (r-natural precision)))))
    (letrec
      ((sqr (lambda (x)
              (cond ((r< (r-abs (r- (r* x x) square))
                         e)
                      x)
                    (t (sqr (r/ (r+ x (r/ square x))
                                '#2)))))))
      (sqr (n-sqrt (r-natural square))))))

(require 'iter)

(define * (arithmetic-iterator rational r* '#1))

(define + (arithmetic-iterator rational r+ '#0))

(define (- . x)
  (cond ((null x)
          (bottom '(too few arguments to rational -)))
        ((eq (cdr x) ()) (r-negate (car x)))
        (t (fold (lambda (a b)
                   (r- (rational a) (rational b)))
                 (car x)
                 (cdr x)))))

(define (/ . x)
  (cond ((null x)
          (bottom '(too few arguments to rational /)))
        ((eq (cdr x) ())
          (/ '#1 (car x)))
        (t (fold (lambda (a b)
                   (r/ (rational a) (rational b)))
                 (car x)
                 (cdr x)))))

(define < (predicate-iterator rational r<))

(define <= (predicate-iterator rational r<=))

(define = (predicate-iterator rational r=))

(define > (predicate-iterator rational r>))

(define >= (predicate-iterator rational r>=))

(define abs r-abs)

(define *epsilon* '#10)

(define expt r-expt)

(define integer r-integer)

(define max r-max)

(define min r-min)

(define natural r-natural)

(define negate r-negate)

(define negative r-negative)

(define number-p r-number-p)

(define one r-one)

(define (sqrt x) (r-sqrt x *epsilon*))

(define zero r-zero)