This file is indexed.

/usr/include/pcl-1.7/pcl/registration/icp.h is in libpcl-dev 1.7.2-7.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
/*
 * Software License Agreement (BSD License)
 *
 *  Point Cloud Library (PCL) - www.pointclouds.org
 *  Copyright (c) 2010, Willow Garage, Inc.
 *  Copyright (c) 2012-, Open Perception, Inc.
 *
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of the copyright holder(s) nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 *
 * $Id$
 *
 */

#ifndef PCL_ICP_H_
#define PCL_ICP_H_

// PCL includes
#include <pcl/sample_consensus/ransac.h>
#include <pcl/sample_consensus/sac_model_registration.h>
#include <pcl/registration/registration.h>
#include <pcl/registration/transformation_estimation_svd.h>
#include <pcl/registration/transformation_estimation_point_to_plane_lls.h>
#include <pcl/registration/correspondence_estimation.h>
#include <pcl/registration/default_convergence_criteria.h>

namespace pcl
{
  /** \brief @b IterativeClosestPoint provides a base implementation of the Iterative Closest Point algorithm. 
    * The transformation is estimated based on Singular Value Decomposition (SVD).
    *
    * The algorithm has several termination criteria:
    *
    * <ol>
    * <li>Number of iterations has reached the maximum user imposed number of iterations (via \ref setMaximumIterations)</li>
    * <li>The epsilon (difference) between the previous transformation and the current estimated transformation is smaller than an user imposed value (via \ref setTransformationEpsilon)</li>
    * <li>The sum of Euclidean squared errors is smaller than a user defined threshold (via \ref setEuclideanFitnessEpsilon)</li>
    * </ol>
    *
    *
    * Usage example:
    * \code
    * IterativeClosestPoint<PointXYZ, PointXYZ> icp;
    * // Set the input source and target
    * icp.setInputCloud (cloud_source);
    * icp.setInputTarget (cloud_target);
    *
    * // Set the max correspondence distance to 5cm (e.g., correspondences with higher distances will be ignored)
    * icp.setMaxCorrespondenceDistance (0.05);
    * // Set the maximum number of iterations (criterion 1)
    * icp.setMaximumIterations (50);
    * // Set the transformation epsilon (criterion 2)
    * icp.setTransformationEpsilon (1e-8);
    * // Set the euclidean distance difference epsilon (criterion 3)
    * icp.setEuclideanFitnessEpsilon (1);
    *
    * // Perform the alignment
    * icp.align (cloud_source_registered);
    *
    * // Obtain the transformation that aligned cloud_source to cloud_source_registered
    * Eigen::Matrix4f transformation = icp.getFinalTransformation ();
    * \endcode
    *
    * \author Radu B. Rusu, Michael Dixon
    * \ingroup registration
    */
  template <typename PointSource, typename PointTarget, typename Scalar = float>
  class IterativeClosestPoint : public Registration<PointSource, PointTarget, Scalar>
  {
    public:
      typedef typename Registration<PointSource, PointTarget, Scalar>::PointCloudSource PointCloudSource;
      typedef typename PointCloudSource::Ptr PointCloudSourcePtr;
      typedef typename PointCloudSource::ConstPtr PointCloudSourceConstPtr;

      typedef typename Registration<PointSource, PointTarget, Scalar>::PointCloudTarget PointCloudTarget;
      typedef typename PointCloudTarget::Ptr PointCloudTargetPtr;
      typedef typename PointCloudTarget::ConstPtr PointCloudTargetConstPtr;

      typedef PointIndices::Ptr PointIndicesPtr;
      typedef PointIndices::ConstPtr PointIndicesConstPtr;

      typedef boost::shared_ptr<IterativeClosestPoint<PointSource, PointTarget, Scalar> > Ptr;
      typedef boost::shared_ptr<const IterativeClosestPoint<PointSource, PointTarget, Scalar> > ConstPtr;

      using Registration<PointSource, PointTarget, Scalar>::reg_name_;
      using Registration<PointSource, PointTarget, Scalar>::getClassName;
      using Registration<PointSource, PointTarget, Scalar>::setInputSource;
      using Registration<PointSource, PointTarget, Scalar>::input_;
      using Registration<PointSource, PointTarget, Scalar>::indices_;
      using Registration<PointSource, PointTarget, Scalar>::target_;
      using Registration<PointSource, PointTarget, Scalar>::nr_iterations_;
      using Registration<PointSource, PointTarget, Scalar>::max_iterations_;
      using Registration<PointSource, PointTarget, Scalar>::previous_transformation_;
      using Registration<PointSource, PointTarget, Scalar>::final_transformation_;
      using Registration<PointSource, PointTarget, Scalar>::transformation_;
      using Registration<PointSource, PointTarget, Scalar>::transformation_epsilon_;
      using Registration<PointSource, PointTarget, Scalar>::converged_;
      using Registration<PointSource, PointTarget, Scalar>::corr_dist_threshold_;
      using Registration<PointSource, PointTarget, Scalar>::inlier_threshold_;
      using Registration<PointSource, PointTarget, Scalar>::min_number_correspondences_;
      using Registration<PointSource, PointTarget, Scalar>::update_visualizer_;
      using Registration<PointSource, PointTarget, Scalar>::euclidean_fitness_epsilon_;
      using Registration<PointSource, PointTarget, Scalar>::correspondences_;
      using Registration<PointSource, PointTarget, Scalar>::transformation_estimation_;
      using Registration<PointSource, PointTarget, Scalar>::correspondence_estimation_;
      using Registration<PointSource, PointTarget, Scalar>::correspondence_rejectors_;

      typename pcl::registration::DefaultConvergenceCriteria<Scalar>::Ptr convergence_criteria_;
      typedef typename Registration<PointSource, PointTarget, Scalar>::Matrix4 Matrix4;

      /** \brief Empty constructor. */
      IterativeClosestPoint () 
        : x_idx_offset_ (0)
        , y_idx_offset_ (0)
        , z_idx_offset_ (0)
        , nx_idx_offset_ (0)
        , ny_idx_offset_ (0)
        , nz_idx_offset_ (0)
        , use_reciprocal_correspondence_ (false)
        , source_has_normals_ (false)
        , target_has_normals_ (false)
      {
        reg_name_ = "IterativeClosestPoint";
        transformation_estimation_.reset (new pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar> ());
        correspondence_estimation_.reset (new pcl::registration::CorrespondenceEstimation<PointSource, PointTarget, Scalar>);
        convergence_criteria_.reset(new pcl::registration::DefaultConvergenceCriteria<Scalar> (nr_iterations_, transformation_, *correspondences_));
      };

      /** \brief Empty destructor */
      virtual ~IterativeClosestPoint () {}

      /** \brief Returns a pointer to the DefaultConvergenceCriteria used by the IterativeClosestPoint class.
        * This allows to check the convergence state after the align() method as well as to configure
        * DefaultConvergenceCriteria's parameters not available through the ICP API before the align()
        * method is called. Please note that the align method sets max_iterations_,
        * euclidean_fitness_epsilon_ and transformation_epsilon_ and therefore overrides the default / set
        * values of the DefaultConvergenceCriteria instance.
        * \return Pointer to the IterativeClosestPoint's DefaultConvergenceCriteria.
        */
      inline typename pcl::registration::DefaultConvergenceCriteria<Scalar>::Ptr
      getConvergeCriteria ()
      {
        return convergence_criteria_;
      }

      /** \brief Provide a pointer to the input source 
        * (e.g., the point cloud that we want to align to the target)
        *
        * \param[in] cloud the input point cloud source
        */
      virtual void
      setInputSource (const PointCloudSourceConstPtr &cloud)
      {
        Registration<PointSource, PointTarget, Scalar>::setInputSource (cloud);
        std::vector<pcl::PCLPointField> fields;
        pcl::getFields (*cloud, fields);
        source_has_normals_ = false;
        for (size_t i = 0; i < fields.size (); ++i)
        {
          if      (fields[i].name == "x") x_idx_offset_ = fields[i].offset;
          else if (fields[i].name == "y") y_idx_offset_ = fields[i].offset;
          else if (fields[i].name == "z") z_idx_offset_ = fields[i].offset;
          else if (fields[i].name == "normal_x") 
          {
            source_has_normals_ = true;
            nx_idx_offset_ = fields[i].offset;
          }
          else if (fields[i].name == "normal_y") 
          {
            source_has_normals_ = true;
            ny_idx_offset_ = fields[i].offset;
          }
          else if (fields[i].name == "normal_z") 
          {
            source_has_normals_ = true;
            nz_idx_offset_ = fields[i].offset;
          }
        }
      }
      
      /** \brief Provide a pointer to the input target 
        * (e.g., the point cloud that we want to align to the target)
        *
        * \param[in] cloud the input point cloud target
        */
      virtual void
      setInputTarget (const PointCloudTargetConstPtr &cloud)
      {
        Registration<PointSource, PointTarget, Scalar>::setInputTarget (cloud);
        std::vector<pcl::PCLPointField> fields;
        pcl::getFields (*cloud, fields);
        target_has_normals_ = false;
        for (size_t i = 0; i < fields.size (); ++i)
        {
          if (fields[i].name == "normal_x" || fields[i].name == "normal_y" || fields[i].name == "normal_z") 
          {
            target_has_normals_ = true;
            break;
          }
        }
      }

      /** \brief Set whether to use reciprocal correspondence or not
        *
        * \param[in] use_reciprocal_correspondence whether to use reciprocal correspondence or not
        */
      inline void
      setUseReciprocalCorrespondences (bool use_reciprocal_correspondence)
      {
        use_reciprocal_correspondence_ = use_reciprocal_correspondence;
      }

      /** \brief Obtain whether reciprocal correspondence are used or not */
      inline bool
      getUseReciprocalCorrespondences () const
      {
        return (use_reciprocal_correspondence_);
      }

    protected:

      /** \brief Apply a rigid transform to a given dataset. Here we check whether whether
        * the dataset has surface normals in addition to XYZ, and rotate normals as well.
        * \param[in] input the input point cloud
        * \param[out] output the resultant output point cloud
        * \param[in] transform a 4x4 rigid transformation
        * \note Can be used with cloud_in equal to cloud_out
        */
      virtual void 
      transformCloud (const PointCloudSource &input, 
                      PointCloudSource &output, 
                      const Matrix4 &transform);

      /** \brief Rigid transformation computation method  with initial guess.
        * \param output the transformed input point cloud dataset using the rigid transformation found
        * \param guess the initial guess of the transformation to compute
        */
      virtual void 
      computeTransformation (PointCloudSource &output, const Matrix4 &guess);

      /** \brief Looks at the Estimators and Rejectors and determines whether their blob-setter methods need to be called */
      virtual void
      determineRequiredBlobData ();

      /** \brief XYZ fields offset. */
      size_t x_idx_offset_, y_idx_offset_, z_idx_offset_;

      /** \brief Normal fields offset. */
      size_t nx_idx_offset_, ny_idx_offset_, nz_idx_offset_;

      /** \brief The correspondence type used for correspondence estimation. */
      bool use_reciprocal_correspondence_;

      /** \brief Internal check whether source dataset has normals or not. */
      bool source_has_normals_;
      /** \brief Internal check whether target dataset has normals or not. */
      bool target_has_normals_;

      /** \brief Checks for whether estimators and rejectors need various data */
      bool need_source_blob_, need_target_blob_;
  };

  /** \brief @b IterativeClosestPointWithNormals is a special case of
    * IterativeClosestPoint, that uses a transformation estimated based on
    * Point to Plane distances by default.
    *
    * \author Radu B. Rusu
    * \ingroup registration
    */
  template <typename PointSource, typename PointTarget, typename Scalar = float>
  class IterativeClosestPointWithNormals : public IterativeClosestPoint<PointSource, PointTarget, Scalar>
  {
    public:
      typedef typename IterativeClosestPoint<PointSource, PointTarget, Scalar>::PointCloudSource PointCloudSource;
      typedef typename IterativeClosestPoint<PointSource, PointTarget, Scalar>::PointCloudTarget PointCloudTarget;
      typedef typename IterativeClosestPoint<PointSource, PointTarget, Scalar>::Matrix4 Matrix4;

      using IterativeClosestPoint<PointSource, PointTarget, Scalar>::reg_name_;
      using IterativeClosestPoint<PointSource, PointTarget, Scalar>::transformation_estimation_;
      using IterativeClosestPoint<PointSource, PointTarget, Scalar>::correspondence_rejectors_;

      typedef boost::shared_ptr<IterativeClosestPoint<PointSource, PointTarget, Scalar> > Ptr;
      typedef boost::shared_ptr<const IterativeClosestPoint<PointSource, PointTarget, Scalar> > ConstPtr;

      /** \brief Empty constructor. */
      IterativeClosestPointWithNormals () 
      {
        reg_name_ = "IterativeClosestPointWithNormals";
        transformation_estimation_.reset (new pcl::registration::TransformationEstimationPointToPlaneLLS<PointSource, PointTarget, Scalar> ());
        //correspondence_rejectors_.add
      };
      
      /** \brief Empty destructor */
      virtual ~IterativeClosestPointWithNormals () {}

    protected:

      /** \brief Apply a rigid transform to a given dataset
        * \param[in] input the input point cloud
        * \param[out] output the resultant output point cloud
        * \param[in] transform a 4x4 rigid transformation
        * \note Can be used with cloud_in equal to cloud_out
        */
      virtual void 
      transformCloud (const PointCloudSource &input, 
                      PointCloudSource &output, 
                      const Matrix4 &transform);
  };
}

#include <pcl/registration/impl/icp.hpp>

#endif  //#ifndef PCL_ICP_H_