/usr/include/pcl-1.7/pcl/kdtree/kdtree.h is in libpcl-dev 1.7.2-7.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 | /*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2009-2011, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef PCL_KDTREE_KDTREE_H_
#define PCL_KDTREE_KDTREE_H_
#include <limits.h>
#include <pcl/pcl_macros.h>
#include <pcl/point_cloud.h>
#include <pcl/point_representation.h>
#include <pcl/common/io.h>
#include <pcl/common/copy_point.h>
namespace pcl
{
/** \brief KdTree represents the base spatial locator class for kd-tree implementations.
* \author Radu B Rusu, Bastian Steder, Michael Dixon
* \ingroup kdtree
*/
template <typename PointT>
class KdTree
{
public:
typedef boost::shared_ptr <std::vector<int> > IndicesPtr;
typedef boost::shared_ptr <const std::vector<int> > IndicesConstPtr;
typedef pcl::PointCloud<PointT> PointCloud;
typedef boost::shared_ptr<PointCloud> PointCloudPtr;
typedef boost::shared_ptr<const PointCloud> PointCloudConstPtr;
typedef pcl::PointRepresentation<PointT> PointRepresentation;
//typedef boost::shared_ptr<PointRepresentation> PointRepresentationPtr;
typedef boost::shared_ptr<const PointRepresentation> PointRepresentationConstPtr;
// Boost shared pointers
typedef boost::shared_ptr<KdTree<PointT> > Ptr;
typedef boost::shared_ptr<const KdTree<PointT> > ConstPtr;
/** \brief Empty constructor for KdTree. Sets some internal values to their defaults.
* \param[in] sorted set to true if the application that the tree will be used for requires sorted nearest neighbor indices (default). False otherwise.
*/
KdTree (bool sorted = true) : input_(), indices_(),
epsilon_(0.0f), min_pts_(1), sorted_(sorted),
point_representation_ (new DefaultPointRepresentation<PointT>)
{
};
/** \brief Provide a pointer to the input dataset.
* \param[in] cloud the const boost shared pointer to a PointCloud message
* \param[in] indices the point indices subset that is to be used from \a cloud - if NULL the whole cloud is used
*/
virtual void
setInputCloud (const PointCloudConstPtr &cloud, const IndicesConstPtr &indices = IndicesConstPtr ())
{
input_ = cloud;
indices_ = indices;
}
/** \brief Get a pointer to the vector of indices used. */
inline IndicesConstPtr
getIndices () const
{
return (indices_);
}
/** \brief Get a pointer to the input point cloud dataset. */
inline PointCloudConstPtr
getInputCloud () const
{
return (input_);
}
/** \brief Provide a pointer to the point representation to use to convert points into k-D vectors.
* \param[in] point_representation the const boost shared pointer to a PointRepresentation
*/
inline void
setPointRepresentation (const PointRepresentationConstPtr &point_representation)
{
point_representation_ = point_representation;
if (!input_) return;
setInputCloud (input_, indices_); // Makes sense in derived classes to reinitialize the tree
}
/** \brief Get a pointer to the point representation used when converting points into k-D vectors. */
inline PointRepresentationConstPtr
getPointRepresentation () const
{
return (point_representation_);
}
/** \brief Destructor for KdTree. Deletes all allocated data arrays and destroys the kd-tree structures. */
virtual ~KdTree () {};
/** \brief Search for k-nearest neighbors for the given query point.
* \param[in] p_q the given query point
* \param[in] k the number of neighbors to search for
* \param[out] k_indices the resultant indices of the neighboring points (must be resized to \a k a priori!)
* \param[out] k_sqr_distances the resultant squared distances to the neighboring points (must be resized to \a k
* a priori!)
* \return number of neighbors found
*/
virtual int
nearestKSearch (const PointT &p_q, int k,
std::vector<int> &k_indices, std::vector<float> &k_sqr_distances) const = 0;
/** \brief Search for k-nearest neighbors for the given query point.
*
* \attention This method does not do any bounds checking for the input index
* (i.e., index >= cloud.points.size () || index < 0), and assumes valid (i.e., finite) data.
*
* \param[in] cloud the point cloud data
* \param[in] index a \a valid index in \a cloud representing a \a valid (i.e., finite) query point
* \param[in] k the number of neighbors to search for
* \param[out] k_indices the resultant indices of the neighboring points (must be resized to \a k a priori!)
* \param[out] k_sqr_distances the resultant squared distances to the neighboring points (must be resized to \a k
* a priori!)
*
* \return number of neighbors found
*
* \exception asserts in debug mode if the index is not between 0 and the maximum number of points
*/
virtual int
nearestKSearch (const PointCloud &cloud, int index, int k,
std::vector<int> &k_indices, std::vector<float> &k_sqr_distances) const
{
assert (index >= 0 && index < static_cast<int> (cloud.points.size ()) && "Out-of-bounds error in nearestKSearch!");
return (nearestKSearch (cloud.points[index], k, k_indices, k_sqr_distances));
}
/** \brief Search for k-nearest neighbors for the given query point.
* This method accepts a different template parameter for the point type.
* \param[in] point the given query point
* \param[in] k the number of neighbors to search for
* \param[out] k_indices the resultant indices of the neighboring points (must be resized to \a k a priori!)
* \param[out] k_sqr_distances the resultant squared distances to the neighboring points (must be resized to \a k
* a priori!)
* \return number of neighbors found
*/
template <typename PointTDiff> inline int
nearestKSearchT (const PointTDiff &point, int k,
std::vector<int> &k_indices, std::vector<float> &k_sqr_distances) const
{
PointT p;
copyPoint (point, p);
return (nearestKSearch (p, k, k_indices, k_sqr_distances));
}
/** \brief Search for k-nearest neighbors for the given query point (zero-copy).
*
* \attention This method does not do any bounds checking for the input index
* (i.e., index >= cloud.points.size () || index < 0), and assumes valid (i.e., finite) data.
*
* \param[in] index a \a valid index representing a \a valid query point in the dataset given
* by \a setInputCloud. If indices were given in setInputCloud, index will be the position in
* the indices vector.
*
* \param[in] k the number of neighbors to search for
* \param[out] k_indices the resultant indices of the neighboring points (must be resized to \a k a priori!)
* \param[out] k_sqr_distances the resultant squared distances to the neighboring points (must be resized to \a k
* a priori!)
* \return number of neighbors found
*
* \exception asserts in debug mode if the index is not between 0 and the maximum number of points
*/
virtual int
nearestKSearch (int index, int k,
std::vector<int> &k_indices, std::vector<float> &k_sqr_distances) const
{
if (indices_ == NULL)
{
assert (index >= 0 && index < static_cast<int> (input_->points.size ()) && "Out-of-bounds error in nearestKSearch!");
return (nearestKSearch (input_->points[index], k, k_indices, k_sqr_distances));
}
else
{
assert (index >= 0 && index < static_cast<int> (indices_->size ()) && "Out-of-bounds error in nearestKSearch!");
return (nearestKSearch (input_->points[(*indices_)[index]], k, k_indices, k_sqr_distances));
}
}
/** \brief Search for all the nearest neighbors of the query point in a given radius.
* \param[in] p_q the given query point
* \param[in] radius the radius of the sphere bounding all of p_q's neighbors
* \param[out] k_indices the resultant indices of the neighboring points
* \param[out] k_sqr_distances the resultant squared distances to the neighboring points
* \param[in] max_nn if given, bounds the maximum returned neighbors to this value. If \a max_nn is set to
* 0 or to a number higher than the number of points in the input cloud, all neighbors in \a radius will be
* returned.
* \return number of neighbors found in radius
*/
virtual int
radiusSearch (const PointT &p_q, double radius, std::vector<int> &k_indices,
std::vector<float> &k_sqr_distances, unsigned int max_nn = 0) const = 0;
/** \brief Search for all the nearest neighbors of the query point in a given radius.
*
* \attention This method does not do any bounds checking for the input index
* (i.e., index >= cloud.points.size () || index < 0), and assumes valid (i.e., finite) data.
*
* \param[in] cloud the point cloud data
* \param[in] index a \a valid index in \a cloud representing a \a valid (i.e., finite) query point
* \param[in] radius the radius of the sphere bounding all of p_q's neighbors
* \param[out] k_indices the resultant indices of the neighboring points
* \param[out] k_sqr_distances the resultant squared distances to the neighboring points
* \param[in] max_nn if given, bounds the maximum returned neighbors to this value. If \a max_nn is set to
* 0 or to a number higher than the number of points in the input cloud, all neighbors in \a radius will be
* returned.
* \return number of neighbors found in radius
*
* \exception asserts in debug mode if the index is not between 0 and the maximum number of points
*/
virtual int
radiusSearch (const PointCloud &cloud, int index, double radius,
std::vector<int> &k_indices, std::vector<float> &k_sqr_distances,
unsigned int max_nn = 0) const
{
assert (index >= 0 && index < static_cast<int> (cloud.points.size ()) && "Out-of-bounds error in radiusSearch!");
return (radiusSearch(cloud.points[index], radius, k_indices, k_sqr_distances, max_nn));
}
/** \brief Search for all the nearest neighbors of the query point in a given radius.
* \param[in] point the given query point
* \param[in] radius the radius of the sphere bounding all of p_q's neighbors
* \param[out] k_indices the resultant indices of the neighboring points
* \param[out] k_sqr_distances the resultant squared distances to the neighboring points
* \param[in] max_nn if given, bounds the maximum returned neighbors to this value. If \a max_nn is set to
* 0 or to a number higher than the number of points in the input cloud, all neighbors in \a radius will be
* returned.
* \return number of neighbors found in radius
*/
template <typename PointTDiff> inline int
radiusSearchT (const PointTDiff &point, double radius, std::vector<int> &k_indices,
std::vector<float> &k_sqr_distances, unsigned int max_nn = 0) const
{
PointT p;
copyPoint (point, p);
return (radiusSearch (p, radius, k_indices, k_sqr_distances, max_nn));
}
/** \brief Search for all the nearest neighbors of the query point in a given radius (zero-copy).
*
* \attention This method does not do any bounds checking for the input index
* (i.e., index >= cloud.points.size () || index < 0), and assumes valid (i.e., finite) data.
*
* \param[in] index a \a valid index representing a \a valid query point in the dataset given
* by \a setInputCloud. If indices were given in setInputCloud, index will be the position in
* the indices vector.
*
* \param[in] radius the radius of the sphere bounding all of p_q's neighbors
* \param[out] k_indices the resultant indices of the neighboring points
* \param[out] k_sqr_distances the resultant squared distances to the neighboring points
* \param[in] max_nn if given, bounds the maximum returned neighbors to this value. If \a max_nn is set to
* 0 or to a number higher than the number of points in the input cloud, all neighbors in \a radius will be
* returned.
* \return number of neighbors found in radius
*
* \exception asserts in debug mode if the index is not between 0 and the maximum number of points
*/
virtual int
radiusSearch (int index, double radius, std::vector<int> &k_indices,
std::vector<float> &k_sqr_distances, unsigned int max_nn = 0) const
{
if (indices_ == NULL)
{
assert (index >= 0 && index < static_cast<int> (input_->points.size ()) && "Out-of-bounds error in radiusSearch!");
return (radiusSearch (input_->points[index], radius, k_indices, k_sqr_distances, max_nn));
}
else
{
assert (index >= 0 && index < static_cast<int> (indices_->size ()) && "Out-of-bounds error in radiusSearch!");
return (radiusSearch (input_->points[(*indices_)[index]], radius, k_indices, k_sqr_distances, max_nn));
}
}
/** \brief Set the search epsilon precision (error bound) for nearest neighbors searches.
* \param[in] eps precision (error bound) for nearest neighbors searches
*/
virtual inline void
setEpsilon (float eps)
{
epsilon_ = eps;
}
/** \brief Get the search epsilon precision (error bound) for nearest neighbors searches. */
inline float
getEpsilon () const
{
return (epsilon_);
}
/** \brief Minimum allowed number of k nearest neighbors points that a viable result must contain.
* \param[in] min_pts the minimum number of neighbors in a viable neighborhood
*/
inline void
setMinPts (int min_pts)
{
min_pts_ = min_pts;
}
/** \brief Get the minimum allowed number of k nearest neighbors points that a viable result must contain. */
inline int
getMinPts () const
{
return (min_pts_);
}
protected:
/** \brief The input point cloud dataset containing the points we need to use. */
PointCloudConstPtr input_;
/** \brief A pointer to the vector of point indices to use. */
IndicesConstPtr indices_;
/** \brief Epsilon precision (error bound) for nearest neighbors searches. */
float epsilon_;
/** \brief Minimum allowed number of k nearest neighbors points that a viable result must contain. */
int min_pts_;
/** \brief Return the radius search neighbours sorted **/
bool sorted_;
/** \brief For converting different point structures into k-dimensional vectors for nearest-neighbor search. */
PointRepresentationConstPtr point_representation_;
/** \brief Class getName method. */
virtual std::string
getName () const = 0;
};
}
#endif //#ifndef _PCL_KDTREE_KDTREE_H_
|