/usr/include/openturns/KrigingEvaluation.hxx is in libopenturns-dev 1.3-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 | // -*- C++ -*-
/**
* @file KrigingAlgorithm.hxx
* @brief The class building gaussian process regression
*
* Copyright (C) 2005-2014 Airbus-EDF-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
* @author schueller
*/
#ifndef OPENTURNS_KRIGINGEVALUATION_HXX
#define OPENTURNS_KRIGINGEVALUATION_HXX
#include "NumericalMathEvaluationImplementation.hxx"
#include "CovarianceModel.hxx"
#include "TBB.hxx"
BEGIN_NAMESPACE_OPENTURNS
/**
* @class KrigingEvaluation
*
* This class permits prediction on a gaussian process
*/
class KrigingEvaluation
: public NumericalMathEvaluationImplementation
{
CLASSNAME
public:
/** Default constructor */
KrigingEvaluation();
/** Constructor with parameters */
KrigingEvaluation(const Basis & basis,
const NumericalSample & inputSample,
const CovarianceModel & correlationModel,
const NumericalPoint & beta,
const NumericalPoint & gamma);
/** Virtual constructor */
virtual KrigingEvaluation * clone() const;
/** Comparison operator */
Bool operator ==(const KrigingEvaluation & other) const;
/** String converter */
virtual String __repr__() const;
virtual String __str__(const String & offset = "") const;
/** Test for actual implementation */
virtual Bool isActualImplementation() const;
/** Operator () */
virtual NumericalPoint operator()(const NumericalPoint & inP) const;
virtual NumericalSample operator()(const NumericalSample & inS) const;
/** Accessor for input point dimension */
virtual UnsignedLong getInputDimension() const;
/** Accessor for output point dimension */
virtual UnsignedLong getOutputDimension() const;
/** Method save() stores the object through the StorageManager */
void save(Advocate & adv) const;
/** Method load() reloads the object from the StorageManager */
void load(Advocate & adv);
protected:
// Helper for the parallel version of the point-based evaluation operator
struct KrigingEvaluationPointFunctor
{
const NumericalPoint & input_;
const KrigingEvaluation & evaluation_;
NumericalScalar accumulator_;
KrigingEvaluationPointFunctor(const NumericalPoint & input,
const KrigingEvaluation & evaluation)
: input_(input)
, evaluation_(evaluation)
, accumulator_(0.0)
{}
KrigingEvaluationPointFunctor(const KrigingEvaluationPointFunctor & other,
TBB::Split)
: input_(other.input_)
, evaluation_(other.evaluation_)
, accumulator_(0.0)
{}
inline void operator()( const TBB::BlockedRange<UnsignedLong> & r )
{
for (UnsignedLong i = r.begin(); i != r.end(); ++i) accumulator_ += evaluation_.covarianceModel_(input_, evaluation_.inputSample_[i])(0, 0) * evaluation_.gamma_[i];
} // operator()
inline void join(const KrigingEvaluationPointFunctor & other)
{
accumulator_ += other.accumulator_;
}
}; // struct KrigingEvaluationPointFunctor
// Helper for the parallel version of the sample-based evaluation operator
struct KrigingEvaluationSampleFunctor
{
const NumericalSample & input_;
NumericalSample & output_;
const KrigingEvaluation & evaluation_;
UnsignedLong trainingSize_;
UnsignedLong basisSize_;
KrigingEvaluationSampleFunctor(const NumericalSample & input,
NumericalSample & output,
const KrigingEvaluation & evaluation)
: input_(input)
, output_(output)
, evaluation_(evaluation)
, trainingSize_(evaluation.inputSample_.getSize())
, basisSize_(evaluation.basis_.getSize())
{}
inline void operator()( const TBB::BlockedRange<UnsignedLong> & r ) const
{
const UnsignedLong start(r.begin());
const UnsignedLong size(r.end() - start);
Matrix R(size, trainingSize_);
Matrix F(size, basisSize_);
for (UnsignedLong i = 0; i != size; ++i)
{
for (UnsignedLong j = 0; j < trainingSize_; ++j)
R(i, j) = evaluation_.covarianceModel_(input_[start + i], evaluation_.inputSample_[j])(0, 0);
for (UnsignedLong j = 0; j < basisSize_; ++j)
F(i, j) = evaluation_.basis_[j](input_[start + i])[0];
}
const NumericalPoint pointResult(F * evaluation_.beta_ + R * evaluation_.gamma_);
for (UnsignedLong i = 0; i != size; ++i) output_[start + i][0] = pointResult[i];
} // operator()
}; // struct KrigingEvaluationSampleFunctor
/// Basis
Basis basis_;
/// Training (input) sample
NumericalSample inputSample_;
/// Correlation model
CovarianceModel covarianceModel_;
/// Regression weights
NumericalPoint beta_;
NumericalPoint gamma_;
}; /* class KrigingEvaluation */
END_NAMESPACE_OPENTURNS
#endif
|