This file is indexed.

/usr/include/openturns/KrigingEvaluation.hxx is in libopenturns-dev 1.3-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
//                                               -*- C++ -*-
/**
 *  @file  KrigingAlgorithm.hxx
 *  @brief The class building gaussian process regression
 *
 *  Copyright (C) 2005-2014 Airbus-EDF-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 *  @author schueller
 */
#ifndef OPENTURNS_KRIGINGEVALUATION_HXX
#define OPENTURNS_KRIGINGEVALUATION_HXX

#include "NumericalMathEvaluationImplementation.hxx"
#include "CovarianceModel.hxx"
#include "TBB.hxx"


BEGIN_NAMESPACE_OPENTURNS

/**
 * @class KrigingEvaluation
 *
 * This class permits prediction on a gaussian process
 */
class KrigingEvaluation
  : public NumericalMathEvaluationImplementation
{
  CLASSNAME

public:

  /** Default constructor */
  KrigingEvaluation();

  /** Constructor with parameters */
  KrigingEvaluation(const Basis & basis,
                    const NumericalSample & inputSample,
                    const CovarianceModel & correlationModel,
                    const NumericalPoint & beta,
                    const NumericalPoint & gamma);

  /** Virtual constructor */
  virtual KrigingEvaluation * clone() const;

  /** Comparison operator */
  Bool operator ==(const KrigingEvaluation & other) const;

  /** String converter */
  virtual String __repr__() const;
  virtual String __str__(const String & offset = "") const;

  /** Test for actual implementation */
  virtual Bool isActualImplementation() const;

  /** Operator () */
  virtual NumericalPoint operator()(const NumericalPoint & inP) const;
  virtual NumericalSample operator()(const NumericalSample & inS) const;

  /** Accessor for input point dimension */
  virtual UnsignedLong getInputDimension() const;

  /** Accessor for output point dimension */
  virtual UnsignedLong getOutputDimension() const;

  /** Method save() stores the object through the StorageManager */
  void save(Advocate & adv) const;

  /** Method load() reloads the object from the StorageManager */
  void load(Advocate & adv);

protected:

  // Helper for the parallel version of the point-based evaluation operator
  struct KrigingEvaluationPointFunctor
  {
    const NumericalPoint & input_;
    const KrigingEvaluation & evaluation_;
    NumericalScalar accumulator_;

    KrigingEvaluationPointFunctor(const NumericalPoint & input,
                                  const KrigingEvaluation & evaluation)
      : input_(input)
      , evaluation_(evaluation)
      , accumulator_(0.0)
    {}

    KrigingEvaluationPointFunctor(const KrigingEvaluationPointFunctor & other,
                                  TBB::Split)
      : input_(other.input_)
      , evaluation_(other.evaluation_)
      , accumulator_(0.0)
    {}

    inline void operator()( const TBB::BlockedRange<UnsignedLong> & r )
    {
      for (UnsignedLong i = r.begin(); i != r.end(); ++i) accumulator_ += evaluation_.covarianceModel_(input_, evaluation_.inputSample_[i])(0, 0) * evaluation_.gamma_[i];
    } // operator()

    inline void join(const KrigingEvaluationPointFunctor & other)
    {
      accumulator_ += other.accumulator_;
    }

  }; // struct KrigingEvaluationPointFunctor

  // Helper for the parallel version of the sample-based evaluation operator
  struct KrigingEvaluationSampleFunctor
  {
    const NumericalSample & input_;
    NumericalSample & output_;
    const KrigingEvaluation & evaluation_;
    UnsignedLong trainingSize_;
    UnsignedLong basisSize_;

    KrigingEvaluationSampleFunctor(const NumericalSample & input,
                                   NumericalSample & output,
                                   const KrigingEvaluation & evaluation)
      : input_(input)
      , output_(output)
      , evaluation_(evaluation)
      , trainingSize_(evaluation.inputSample_.getSize())
      , basisSize_(evaluation.basis_.getSize())
    {}

    inline void operator()( const TBB::BlockedRange<UnsignedLong> & r ) const
    {
      const UnsignedLong start(r.begin());
      const UnsignedLong size(r.end() - start);
      Matrix R(size, trainingSize_);
      Matrix F(size, basisSize_);
      for (UnsignedLong i = 0; i != size; ++i)
      {
        for (UnsignedLong j = 0; j < trainingSize_; ++j)
          R(i, j) = evaluation_.covarianceModel_(input_[start + i], evaluation_.inputSample_[j])(0, 0);
        for (UnsignedLong j = 0; j < basisSize_; ++j)
          F(i, j) = evaluation_.basis_[j](input_[start + i])[0];
      }
      const NumericalPoint pointResult(F * evaluation_.beta_ + R * evaluation_.gamma_);
      for (UnsignedLong i = 0; i != size; ++i) output_[start + i][0] = pointResult[i];
    } // operator()
  }; // struct KrigingEvaluationSampleFunctor

  /// Basis
  Basis basis_;

  /// Training (input) sample
  NumericalSample inputSample_;

  /// Correlation model
  CovarianceModel covarianceModel_;

  /// Regression weights
  NumericalPoint beta_;
  NumericalPoint gamma_;

}; /* class KrigingEvaluation */



END_NAMESPACE_OPENTURNS

#endif