/usr/include/givaro/givpoly1kara.inl is in libgivaro-dev 3.7.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 | // ==========================================================================
// $Source: /var/lib/cvs/Givaro/src/library/poly1/givpoly1kara.inl,v $
// Copyright(c)'1994-2011 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
// Authors: J-G Dumas
// $Id: givpoly1kara.inl,v 1.3 2011-11-08 10:38:00 jgdumas Exp $
// ==========================================================================
#ifndef __GIVARO_poly1_kara_INL
#define __GIVARO_poly1_kara_INL
namespace Givaro {
#ifndef KARA_THRESHOLD
#define KARA_THRESHOLD 50
#endif
#ifndef SQR_THRESHOLD
#define SQR_THRESHOLD 50
#endif
#ifndef GIVMIN
#define GIVMIN(a,b) ((a)<(b)?(a):(b))
#endif
// forces standard multiplication
template <class Domain>
inline typename Poly1Dom<Domain,Dense>::Rep& Poly1Dom<Domain,Dense>::stdmul( Rep& R, const Rep& P, const Rep& Q ) const
{
const size_t sR = R.size();
const size_t sP = P.size();
const size_t sQ = Q.size();
if ((sQ ==0) || (sP ==0)) { R.reallocate(0); return R; }
if (sR != sQ+sP) R.reallocate(sR = sP+sQ-1);
stdmul(R, R.begin(), R.end(),
P, P.begin(), P.end(),
Q, Q.begin(), Q.end());
return setdegree(R);
}
// forces FIRST recursive level with Karatsuba multiplication
template <class Domain>
inline typename Poly1Dom<Domain,Dense>::Rep& Poly1Dom<Domain,Dense>::karamul( Rep& R, const Rep& P, const Rep& Q ) const
{
const size_t sR = R.size();
const size_t sP = P.size();
const size_t sQ = Q.size();
if ((sQ ==0) || (sP ==0)) { R.reallocate(0); return R; }
if (sR != sQ+sP) R.reallocate(sR = sP+sQ-1);
karamul(R, R.begin(), R.end(),
P, P.begin(), P.end(),
Q, Q.begin(), Q.end());
return setdegree(R);
}
// Generic mul with choices between standard and Karatsuba multiplication
// Multiplies between the iterator bounds.
template <class Domain>
inline typename Poly1Dom<Domain,Dense>::Rep& Poly1Dom<Domain,Dense>::mul(
Rep& R, const RepIterator Rbeg, const RepIterator Rend,
const Rep& P, const RepConstIterator Pbeg, const RepConstIterator Pend,
const Rep& Q, const RepConstIterator Qbeg, const RepConstIterator Qend ) const {
if ( ( (Pend-Pbeg)> KARA_THRESHOLD ) &&
( (Qend-Qbeg)> KARA_THRESHOLD) )
return karamul(R, Rbeg, Rend,
P, Pbeg, Pend,
Q, Qbeg, Qend);
else
return stdmul(R, Rbeg, Rend,
P, Pbeg, Pend,
Q, Qbeg, Qend);
}
// Generic sqr with choices between standard and recursive multiplication
// Multiplies between the iterator bounds.
template <class Domain>
inline typename Poly1Dom<Domain,Dense>::Rep& Poly1Dom<Domain,Dense>::sqr(
Rep& R, const RepIterator Rbeg, const RepIterator Rend,
const Rep& P, const RepConstIterator Pbeg, const RepConstIterator Pend) const {
Type_t two; _domain.init(two);
_domain.add(two, _domain.one, _domain.one);
if ( (Pend-Pbeg)> SQR_THRESHOLD )
return sqrrec(R, Rbeg, Rend,
P, Pbeg, Pend,
two);
else
return stdsqr(R, Rbeg, Rend,
P, Pbeg, Pend,
two);
}
// Standard multiplication between iterator bounds
template <class Domain>
inline typename Poly1Dom<Domain,Dense>::Rep& Poly1Dom<Domain,Dense>::stdmul(
Rep& R, const RepIterator Rbeg, const RepIterator Rend,
const Rep& P, const RepConstIterator Pbeg, const RepConstIterator Pend,
const Rep& Q, const RepConstIterator Qbeg, const RepConstIterator Qend ) const {
RepConstIterator ai=Pbeg,bi=Qbeg;
RepIterator ri=Rbeg, rig=Rbeg;
if (_domain.isZero(*ai))
for(;bi!=Qend;++bi,++ri)
*ri = _domain.zero;
else
for(;bi!=Qend;++bi,++ri)
if (_domain.isZero(*bi))
*ri = _domain.zero;
else
_domain.mul(*ri,*ai,*bi);
for(;ri!=Rend;++ri)
*ri = _domain.zero;
for(++ai,++rig;ai!=Pend;++ai,++rig)
if (! _domain.isZero(*ai))
for(ri=rig,bi=Qbeg;bi!=Qend;++bi,++ri)
_domain.axpyin(*ri,*ai,*bi);
return R;
}
template <class Domain>
inline typename Poly1Dom<Domain,Dense>::Rep& Poly1Dom<Domain,Dense>::karamul( Rep& R, const RepIterator Rbeg, const RepIterator Rend, const Rep& P, const RepConstIterator Pbeg, const RepConstIterator Pend, const Rep& Q, const RepConstIterator Qbeg, const RepConstIterator Qend ) const
{
// Initialize R to zero
for(RepIterator ri=Rbeg; ri!= Rend; ++ri) _domain.assign(*ri,_domain.zero);
const size_t halfP = (size_t) ((Pend-Pbeg)>>1);
const size_t halfQ = (size_t) ((Qend-Qbeg)>>1);
const size_t half = GIVMIN(halfP, halfQ);
const size_t halfR = half<<1;
const RepConstIterator Pmid=Pbeg+(ssize_t)half; // cut P in halves
const RepConstIterator Qmid=Qbeg+(ssize_t)half; // cut Q in halves
const RepIterator Rmid=Rbeg+(ssize_t)halfR; // cut R in halves
mul(R, Rbeg, Rmid, // Recursive dynamic choice
P, Pbeg, Pmid,
Q, Qbeg, Qmid); // PlQl in first storage part of R
mul(R, Rmid, Rend, // Recursive dynamic choice
P, Pmid, Pend,
Q, Qmid, Qend); // PhQh in second storage part of R
Rep PHPL;
for(RepConstIterator PHi=Pmid; PHi!=Pend; ++PHi)
PHPL.push_back(*PHi);
subin(PHPL, PHPL.begin(), P, Pbeg, Pmid); // Ph - Pl
setdegree(PHPL);
Rep QHQL;
for(RepConstIterator QHi=Qmid; QHi!=Qend; ++QHi)
QHQL.push_back(*QHi);
subin(QHQL, QHQL.begin(), Q, Qbeg, Qmid); // Qh - Ql
setdegree(QHQL);
Rep M;
mul(M, // Recursive dynamic choice
PHPL,
QHQL); // (Ph-Pl)(Qh-Ql)
setdegree(M);
subin(M, M.begin(), M.end(), R, Rbeg, Rmid);// -= PlQl
setdegree(M);
subin(M, M.begin(), M.end(), R, Rmid, Rend);// -= PhQh
setdegree(M);
RepIterator ri=Rbeg+(ssize_t)half;
RepConstIterator mi=M.begin(); // update R with mid product
for( ; mi != M.end(); ++ri, ++mi) _domain.subin(*ri, *mi);
return R;
}
template <class Domain>
inline typename Poly1Dom<Domain,Dense>::Rep& Poly1Dom<Domain,Dense>::sqrrec( Rep& R, const RepIterator Rbeg, const RepIterator Rend, const Rep& P, const RepConstIterator Pbeg, const RepConstIterator Pend, const Type_t& two) const
{
// Initialize R to zero
for(RepIterator ri=Rbeg; ri!= Rend; ++ri) _domain.assign(*ri,_domain.zero);
const size_t half = (size_t) ((Pend-Pbeg)>>1);
const size_t halfR = (half<<1);
const RepConstIterator Pmid=Pbeg+(ssize_t)half; // cut P in halves
const RepIterator Rmid=Rbeg+(ssize_t)halfR; // cut R in halves
sqr(R, Rbeg, Rmid-1, // Recursive dynamic choice
P, Pbeg, Pmid); // Pl^2 in first storage part of R
sqr(R, Rmid, Rend, // Recursive dynamic choice
P, Pmid, Pend); // Ph^2 in second storage part of R
Rep M(P.size());
mul(M, M.begin(), M.end(), // Recursive dynamic choice
P, Pbeg, Pmid,
P, Pmid, Pend);
setdegree(M);
this->mulin(M,two);
RepIterator ri=Rbeg+(ssize_t)half;
RepConstIterator mi=M.begin(); // update R with mid product
for( ; mi != M.end(); ++ri, ++mi) _domain.addin(*ri, *mi);
return R;
}
// Standard square
template <class Domain>
inline typename Poly1Dom<Domain,Dense>::Rep& Poly1Dom<Domain,Dense>::stdsqr(
Rep& R, const RepIterator Rbeg, const RepIterator Rend,
const Rep& P, const RepConstIterator Pbeg, const RepConstIterator Pend,
const Type_t& two) const {
_domain.mul(*Rbeg, *Pbeg, *Pbeg);
RepIterator rit(Rbeg);
RepConstIterator pit=Pbeg;
for(++rit,++pit; rit != Rend; ++pit, ++rit) {
_domain.assign(*rit,_domain.zero);
RepConstIterator backpit=pit, forpit=pit;
for(--backpit ; forpit != Pend; --backpit, ++forpit) {
_domain.axpyin(*rit, *backpit, *forpit);
if (backpit == Pbeg) break;
}
_domain.mulin(*rit, two);
++rit;
_domain.assign(*rit,_domain.zero);
backpit=pit, forpit=pit;
for(--backpit,++forpit; forpit != Pend; --backpit, ++forpit)
{
_domain.axpyin(*rit, *backpit, *forpit);
if (backpit == Pbeg) break;
}
_domain.mulin(*rit, two);
_domain.axpyin(*rit, *pit, *pit);
}
// for(size_t i=0; i<dR; ++i) {
// // even coefficients
// _domain.assign(R[i],_domain.zero);
// size_t iot(i>>1);
// size_t firstj( i>dP ? i-dP : 0);
// for(size_t j=firstj; j<iot; ++j)
// _domain.axpyin(R[i], P[j], P[i-j]);
// _domain.mulin(R[i], two);
// _domain.axpyin(R[i],P[iot],P[iot]);
// // odd coefficients
// ++i; ++iot;
// _domain.assign(R[i],_domain.zero);
// firstj = i>dP ? i-dP : 0;
// for(size_t j=firstj; j<iot; ++j) {
// _domain.axpyin(R[i], P[j], P[i-j]);
// }
// _domain.mulin(R[i], two);
// }
// _domain.mul(R[dR],P[dP],P[dP]);
return R;
}
}
#endif // __GIVARO_poly1_kara_INL
|