This file is indexed.

/usr/include/deal.II/integrators/advection.h is in libdeal.ii-dev 8.1.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
// ---------------------------------------------------------------------
// $Id: advection.h 30942 2013-09-26 08:58:02Z kanschat $
//
// Copyright (C) 2010 - 2013 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef __deal2__integrators_advection_h
#define __deal2__integrators_advection_h


#include <deal.II/base/config.h>
#include <deal.II/base/exceptions.h>
#include <deal.II/base/quadrature.h>
#include <deal.II/lac/full_matrix.h>
#include <deal.II/fe/mapping.h>
#include <deal.II/fe/fe_values.h>
#include <deal.II/meshworker/dof_info.h>

DEAL_II_NAMESPACE_OPEN

namespace LocalIntegrators
{
  /**
   * @brief Local integrators related to advection along a vector field and its DG formulations
   *
   * All advection operators depend on an advection velocity denoted by
   * <b>w</b> in the formulas below. It is denoted as <tt>velocity</tt>
   * in the parameter lists.
   *
   * The functions cell_matrix() and both upwind_value_matrix() are
   * taking the equation in weak form, that is, the directional
   * derivative is on the test function.
   *
   * @ingroup Integrators
   * @author Guido Kanschat
   * @date 2012
   */
  namespace Advection
  {
    /**
     * Advection along the direction <b>w</b> in weak form
     * with derivative on the test function
     * \f[
     * m_{ij} = \int_Z u_j\,(\mathbf w \cdot \nabla) v_i \, dx.
     * \f]
     *
     * The FiniteElement in <tt>fe</tt> may be scalar or vector valued. In
     * the latter case, the advection operator is applied to each component
     * separately.
     *
     * @param M: The advection matrix obtained as result
     * @param fe: The FEValues object describing the local trial function
     * space. #update_values and #update_gradients, and #update_JxW_values
     * must be set.
     * @param fetest: The FEValues object describing the local test
     * function space. #update_values and #update_gradients must be set.
     * @param velocity: The advection velocity, a vector of dimension
     * <tt>dim</tt>. Each component may either contain a vector of length
     * one, in which case a constant velocity is assumed, or a vector with
     * as many entries as quadrature points if the velocity is not constant.
     * @param factor is an optional multiplication factor for the result.
     *
     * @author Guido Kanschat
     * @date 2012
     */
    template<int dim>
    void cell_matrix (
      FullMatrix<double> &M,
      const FEValuesBase<dim> &fe,
      const FEValuesBase<dim> &fetest,
      const VectorSlice<const std::vector<std::vector<double> > > &velocity,
      const double factor = 1.)
    {
      const unsigned int n_dofs = fe.dofs_per_cell;
      const unsigned int t_dofs = fetest.dofs_per_cell;
      const unsigned int n_components = fe.get_fe().n_components();

      AssertDimension(velocity.size(), dim);
      // If the size of the
      // velocity vectors is one,
      // then do not increment
      // between quadrature points.
      const unsigned int v_increment = (velocity[0].size() == 1) ? 0 : 1;

      if (v_increment == 1)
        {
          AssertVectorVectorDimension(velocity, dim, fe.n_quadrature_points);
        }

      AssertDimension(M.n(), n_dofs);
      AssertDimension(M.m(), t_dofs);

      for (unsigned k=0; k<fe.n_quadrature_points; ++k)
        {
          const double dx = factor * fe.JxW(k);
          const unsigned int vindex = k * v_increment;

          for (unsigned j=0; j<n_dofs; ++j)
            for (unsigned i=0; i<t_dofs; ++i)
              for (unsigned int c=0; c<n_components; ++c)
                {
                  double wgradv = velocity[0][vindex]
                                  * fe.shape_grad_component(i,k,c)[0];
                  for (unsigned int d=1; d<dim; ++d)
                    wgradv += velocity[d][vindex]
                              * fe.shape_grad_component(i,k,c)[d];
                  M(i,j) -= dx * wgradv * fe.shape_value_component(j,k,c);
                }
        }
    }

    /**
     * Advection residual operator in strong form
     *
     * \f[
     * r_i = \int_Z  (\mathbf w \cdot \nabla)u\, v_i \, dx.
     * \f]
     */
    template <int dim>
    inline void
    cell_residual  (
      Vector<double> &result,
      const FEValuesBase<dim> &fe,
      const std::vector<Tensor<1,dim> > &input,
      const VectorSlice<const std::vector<std::vector<double> > > &velocity,
      double factor = 1.)
    {
      const unsigned int nq = fe.n_quadrature_points;
      const unsigned int n_dofs = fe.dofs_per_cell;
      Assert(input.size() == nq, ExcDimensionMismatch(input.size(), nq));
      Assert(result.size() == n_dofs, ExcDimensionMismatch(result.size(), n_dofs));

      AssertDimension(velocity.size(), dim);
      const unsigned int v_increment = (velocity[0].size() == 1) ? 0 : 1;
      if (v_increment == 1)
        {
          AssertVectorVectorDimension(velocity, dim, fe.n_quadrature_points);
        }

      for (unsigned k=0; k<nq; ++k)
        {
          const double dx = factor * fe.JxW(k);
          for (unsigned i=0; i<n_dofs; ++i)
            for (unsigned int d=0; d<dim; ++d)
              result(i) += dx * input[k][d]
                           * fe.shape_value(i,k) * velocity[d][k * v_increment];
        }
    }


    /**
     * Vector-valued advection residual operator in strong form
     *
     *
     * \f[
     * r_i = \int_Z \bigl((\mathbf w \cdot \nabla) \mathbf u\bigr) \cdot\mathbf v_i \, dx.
     * \f]
     */
    template <int dim>
    inline void
    cell_residual  (
      Vector<double> &result,
      const FEValuesBase<dim> &fe,
      const VectorSlice<const std::vector<std::vector<Tensor<1,dim> > > > &input,
      const VectorSlice<const std::vector<std::vector<double> > > &velocity,
      double factor = 1.)
    {
      const unsigned int nq = fe.n_quadrature_points;
      const unsigned int n_dofs = fe.dofs_per_cell;
      const unsigned int n_comp = fe.get_fe().n_components();

      AssertVectorVectorDimension(input, n_comp, fe.n_quadrature_points);
      Assert(result.size() == n_dofs, ExcDimensionMismatch(result.size(), n_dofs));

      AssertDimension(velocity.size(), dim);
      const unsigned int v_increment = (velocity[0].size() == 1) ? 0 : 1;
      if (v_increment == 1)
        {
          AssertVectorVectorDimension(velocity, dim, fe.n_quadrature_points);
        }

      for (unsigned k=0; k<nq; ++k)
        {
          const double dx = factor * fe.JxW(k);
          for (unsigned i=0; i<n_dofs; ++i)
            for (unsigned int c=0; c<n_comp; ++c)
              for (unsigned int d=0; d<dim; ++d)
                result(i) += dx * input[c][k][d]
                             * fe.shape_value_component(i,k,c) * velocity[d][k * v_increment];
        }
    }

    /**
     * Upwind flux at the boundary
     * for weak advection
     * operator. This is the value of
     * the trial function at the
     * outflow boundary and zero
     * else:
     * @f[
     * a_{ij} = \int_{\partial\Omega}
     * [\mathbf w\cdot\mathbf n]_+
     * u_i v_j \, ds
     * @f]
     *
     * The <tt>velocity</tt> is
     * provided as a VectorSlice,
     * having <tt>dim</tt> vectors,
     * one for each velocity
     * component. Each of the
     * vectors must either have only
     * a single entry, if t he
     * advection velocity is
     * constant, or have an entry
     * for each quadrature point.
     *
     * The finite element can have
     * several components, in which
     * case each component is
     * advected by the same velocity.
     */
    template <int dim>
    void upwind_value_matrix(
      FullMatrix<double> &M,
      const FEValuesBase<dim> &fe,
      const FEValuesBase<dim> &fetest,
      const VectorSlice<const std::vector<std::vector<double> > > &velocity,
      double factor = 1.)
    {
      const unsigned int n_dofs = fe.dofs_per_cell;
      const unsigned int t_dofs = fetest.dofs_per_cell;
      unsigned int n_components = fe.get_fe().n_components();
      AssertDimension (M.m(), n_dofs);
      AssertDimension (M.n(), n_dofs);

      AssertDimension(velocity.size(), dim);
      const unsigned int v_increment = (velocity[0].size() == 1) ? 0 : 1;
      if (v_increment == 1)
        {
          AssertVectorVectorDimension(velocity, dim, fe.n_quadrature_points);
        }

      for (unsigned k=0; k<fe.n_quadrature_points; ++k)
        {
          const double dx = factor * fe.JxW(k);

          double nv = 0.;
          for (unsigned int d=0; d<dim; ++d)
            nv += fe.normal_vector(k)[d] * velocity[d][k * v_increment];

          if (nv > 0)
            {
              for (unsigned i=0; i<t_dofs; ++i)
                for (unsigned j=0; j<n_dofs; ++j)
                  {
                    if (fe.get_fe().is_primitive())
                      M(i,j) += dx * nv * fe.shape_value(i,k) * fe.shape_value(j,k);
                    else
                      for (unsigned int c=0; c<n_components; ++c)
                        M(i,j) += dx * nv * fetest.shape_value_component(i,k,c)
                                  * fe.shape_value_component(j,k,c);
                  }
            }
        }
    }

    /**
    * Upwind flux in the interior
    * for weak advection
    * operator. Matrix entries
    * correspond to the upwind value
    * of the trial function, multiplied
    * by the jump of the test
    * functions
    * @f[
    * a_{ij} = \int_F \left|\mathbf w
    * \cdot \mathbf n\right|
    * u^\uparrow
    * (v^\uparrow-v^\downarrow)
    * \,ds
    * @f]
    *
    * The <tt>velocity</tt> is
    * provided as a VectorSlice,
    * having <tt>dim</tt> vectors,
    * one for each velocity
    * component. Each of the
    * vectors must either have only
    * a single entry, if t he
    * advection velocity is
    * constant, or have an entry
    * for each quadrature point.
    *
    * The finite element can have
    * several components, in which
    * case each component is
    * advected the same way.
    */
    template <int dim>
    void upwind_value_matrix (
      FullMatrix<double> &M11,
      FullMatrix<double> &M12,
      FullMatrix<double> &M21,
      FullMatrix<double> &M22,
      const FEValuesBase<dim> &fe1,
      const FEValuesBase<dim> &fe2,
      const FEValuesBase<dim> &fetest1,
      const FEValuesBase<dim> &fetest2,
      const VectorSlice<const std::vector<std::vector<double> > > &velocity,
      const double factor = 1.)
    {
      const unsigned int n1 = fe1.dofs_per_cell;
      // Multiply the quadrature point
      // index below with this factor to
      // have simpler data for constant
      // velocities.
      AssertDimension(velocity.size(), dim);
      const unsigned int v_increment = (velocity[0].size() == 1) ? 0 : 1;
      if (v_increment == 1)
        {
          AssertVectorVectorDimension(velocity, dim, fe1.n_quadrature_points);
        }

      for (unsigned k=0; k<fe1.n_quadrature_points; ++k)
        {
          double nbeta = fe1.normal_vector(k)[0] * velocity[0][k * v_increment];
          for (unsigned int d=1; d<dim; ++d)
            nbeta += fe1.normal_vector(k)[d] * velocity[d][k * v_increment];
          const double dx_nbeta = factor * nbeta * fe1.JxW(k);

          for (unsigned i=0; i<n1; ++i)
            for (unsigned j=0; j<n1; ++j)
              if (fe1.get_fe().is_primitive())
                {
                  if (nbeta > 0)
                    {
                      M11(i,j) += dx_nbeta
                                  * fe1.shape_value(j,k)
                                  * fetest1.shape_value(i,k);
                      M21(i,j) -= dx_nbeta
                                  * fe1.shape_value(j,k)
                                  * fetest2.shape_value(i,k);
                    }
                  else
                    {
                      M22(i,j) -= dx_nbeta
                                  * fe2.shape_value(j,k)
                                  * fetest2.shape_value(i,k);
                      M12(i,j) += dx_nbeta
                                  * fe2.shape_value(j,k)
                                  * fetest1.shape_value(i,k);
                    }
                }
              else
                {
                  for (unsigned int d=0; d<fe1.get_fe().n_components(); ++d)
                    if (nbeta > 0)
                      {
                        M11(i,j) += dx_nbeta
                                    * fe1.shape_value_component(j,k,d)
                                    * fetest1.shape_value_component(i,k,d);
                        M21(i,j) -= dx_nbeta
                                    * fe1.shape_value_component(j,k,d)
                                    * fetest2.shape_value_component(i,k,d);
                      }
                    else
                      {
                        M22(i,j) -= dx_nbeta
                                    * fe2.shape_value_component(j,k,d)
                                    * fetest2.shape_value_component(i,k,d);
                        M12(i,j) += dx_nbeta
                                    * fe2.shape_value_component(j,k,d)
                                    * fetest1.shape_value_component(i,k,d);
                      }
                }
        }
    }
  }
}


DEAL_II_NAMESPACE_CLOSE

#endif