/usr/include/deal.II/fe/mapping_q.h is in libdeal.ii-dev 8.1.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 | // ---------------------------------------------------------------------
// $Id: mapping_q.h 30450 2013-08-23 15:48:29Z kronbichler $
//
// Copyright (C) 2001 - 2013 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------
#ifndef __deal2__mapping_q_h
#define __deal2__mapping_q_h
#include <deal.II/base/config.h>
#include <deal.II/base/table.h>
#include <deal.II/fe/mapping_q1.h>
#include <deal.II/fe/fe_q.h>
DEAL_II_NAMESPACE_OPEN
template <int dim, typename POLY> class TensorProductPolynomials;
/*!@addtogroup mapping */
/*@{*/
/**
* Mapping class that uses Qp-mappings on boundary cells. The mapping shape
* functions make use of tensor product polynomials with unit cell support
* points equal to the points of the Gauss-Lobatto quadrature formula. These
* points give a well-conditioned interpolation also for very high orders and
* are therefore preferred over equidistant support points.
*
* For more details about Qp-mappings, see the `mapping' report at
* <tt>deal.II/doc/reports/mapping_q/index.html</tt> in the `Reports'
* section of `Documentation'.
*
* For more information about the <tt>spacedim</tt> template parameter
* check the documentation of FiniteElement or the one of
* Triangulation.
*
* @note Since the boundary description is closely tied to the unit cell
* support points, new boundary descriptions need to explicitly use the
* Gauss-Lobatto points.
*
* @author Ralf Hartmann, 2000, 2001, 2005; Guido Kanschat 2000, 2001
*/
template <int dim, int spacedim=dim>
class MappingQ : public MappingQ1<dim,spacedim>
{
public:
/**
* Constructor. @p p gives the degree of mapping polynomials on boundary
* cells.
*
* The second argument determines whether the higher order mapping should
* also be used on interior cells. If its value is <code>false</code> (the
* default), the a lower-order mapping is used in the interior. This is
* sufficient for most cases where higher order mappings are only used to
* better approximate the boundary. In that case, cells bounded by straight
* lines are acceptable in the interior. However, there are cases where one
* would also like to use a higher order mapping in the interior. The
* MappingQEulerian class is one such case.
*/
MappingQ (const unsigned int p,
const bool use_mapping_q_on_all_cells = false);
/**
* Copy constructor. Performs a deep copy, i.e. duplicates what #tensor_pols
* points to instead of simply copying the #tensor_pols pointer as done by a
* default copy constructor.
*/
MappingQ (const MappingQ<dim,spacedim> &mapping);
/**
* Destructor.
*/
virtual ~MappingQ ();
/**
* Transforms the point @p p on the unit cell to the point @p p_real on the
* real cell @p cell and returns @p p_real.
*/
virtual Point<spacedim>
transform_unit_to_real_cell (
const typename Triangulation<dim,spacedim>::cell_iterator &cell,
const Point<dim> &p) const;
/**
* Transforms the point @p p on the real cell to the point @p p_unit on the
* unit cell @p cell and returns @p p_unit.
*
* Uses Newton iteration and the @p transform_unit_to_real_cell function.
*
* In the codimension one case, this function returns the normal projection
* of the real point @p p on the curve or surface identified by the @p cell.
*
* @note Polynomial mappings from the reference (unit) cell coordinates to
* the coordinate system of a real cell are not always invertible if the
* point for which the inverse mapping is to be computed lies outside the
* cell's boundaries. In such cases, the current function may fail to
* compute a point on the reference cell whose image under the mapping
* equals the given point @p p. If this is the case then this function
* throws an exception of type Mapping::ExcTransformationFailed . Whether
* the given point @p p lies outside the cell can therefore be determined by
* checking whether the return reference coordinates lie inside of outside
* the reference cell (e.g., using GeometryInfo::is_inside_unit_cell) or
* whether the exception mentioned above has been thrown.
*/
virtual Point<dim>
transform_real_to_unit_cell (
const typename Triangulation<dim,spacedim>::cell_iterator &cell,
const Point<spacedim> &p) const;
virtual void
transform (const VectorSlice<const std::vector<Tensor<1,dim> > > input,
VectorSlice<std::vector<Tensor<1,spacedim> > > output,
const typename Mapping<dim,spacedim>::InternalDataBase &internal,
const MappingType type) const;
virtual void
transform (const VectorSlice<const std::vector<DerivativeForm<1, dim, spacedim> > > input,
VectorSlice<std::vector<Tensor<2,spacedim> > > output,
const typename Mapping<dim,spacedim>::InternalDataBase &internal,
const MappingType type) const;
virtual
void
transform (const VectorSlice<const std::vector<Tensor<2, dim> > > input,
VectorSlice<std::vector<Tensor<2,spacedim> > > output,
const typename Mapping<dim,spacedim>::InternalDataBase &internal,
const MappingType type) const;
/**
* Return the degree of the mapping, i.e. the value which was passed to the
* constructor.
*/
unsigned int get_degree () const;
/**
* Return a pointer to a copy of the present object. The caller of this copy
* then assumes ownership of it.
*/
virtual
Mapping<dim,spacedim> *clone () const;
/**
* Storage for internal data of Q_degree transformation.
*/
class InternalData : public MappingQ1<dim,spacedim>::InternalData
{
public:
/**
* Constructor.
*/
InternalData (const unsigned int n_shape_functions);
/**
* Return an estimate (in bytes) or the memory consumption of this object.
*/
virtual std::size_t memory_consumption () const;
/**
* Unit normal vectors. Used for the alternative computation of the normal
* vectors. See doc of the @p alternative_normals_computation flag.
*
* Filled (hardcoded) once in @p get_face_data.
*/
std::vector<std::vector<Point<dim> > > unit_normals;
/**
* Flag that is set by the <tt>fill_fe_[[sub]face]_values</tt> function.
*
* If this flag is @p true we are on an interior cell and the @p
* mapping_q1_data is used.
*/
bool use_mapping_q1_on_current_cell;
/**
* On interior cells @p MappingQ1 is used.
*/
typename MappingQ1<dim,spacedim>::InternalData mapping_q1_data;
};
protected:
/**
* Implementation of the interface in Mapping.
*/
virtual void
fill_fe_values (const typename Triangulation<dim,spacedim>::cell_iterator &cell,
const Quadrature<dim> &quadrature,
typename Mapping<dim,spacedim>::InternalDataBase &mapping_data,
typename std::vector<Point<spacedim> > &quadrature_points,
std::vector<double> &JxW_values,
std::vector<DerivativeForm<1,dim,spacedim> > &jacobians,
std::vector<DerivativeForm<2,dim,spacedim> > &jacobian_grads,
std::vector<DerivativeForm<1,spacedim,dim> > &inverse_jacobians,
std::vector<Point<spacedim> > &cell_normal_vectors,
CellSimilarity::Similarity &cell_similarity) const ;
/**
* Implementation of the interface in Mapping.
*/
virtual void
fill_fe_face_values (const typename Triangulation<dim,spacedim>::cell_iterator &cell,
const unsigned int face_no,
const Quadrature<dim-1>& quadrature,
typename Mapping<dim,spacedim>::InternalDataBase &mapping_data,
typename std::vector<Point<spacedim> > &quadrature_points,
std::vector<double> &JxW_values,
typename std::vector<Tensor<1,spacedim> > &exterior_form,
typename std::vector<Point<spacedim> > &normal_vectors) const ;
/**
* Implementation of the interface in Mapping.
*/
virtual void
fill_fe_subface_values (const typename Triangulation<dim,spacedim>::cell_iterator &cell,
const unsigned int face_no,
const unsigned int sub_no,
const Quadrature<dim-1>& quadrature,
typename Mapping<dim,spacedim>::InternalDataBase &mapping_data,
typename std::vector<Point<spacedim> > &quadrature_points,
std::vector<double> &JxW_values,
typename std::vector<Tensor<1,spacedim> > &exterior_form,
typename std::vector<Point<spacedim> > &normal_vectors) const ;
/**
* For <tt>dim=2,3</tt>. Append the support points of all shape functions
* located on bounding lines to the vector @p a. Points located on the line
* but not on vertices are not included.
*
* Needed by the @p compute_support_points_laplace function . For
* <tt>dim=1</tt> this function is empty.
*
* This function is made virtual in order to allow derived classes to choose
* shape function support points differently than the present class, which
* chooses the points as interpolation points on the boundary.
*/
virtual void
add_line_support_points (const typename Triangulation<dim,spacedim>::cell_iterator &cell,
std::vector<Point<spacedim> > &a) const;
/**
* For <tt>dim=3</tt>. Append the support points of all shape functions
* located on bounding faces (quads in 3d) to the vector @p a. Points
* located on the quad but not on vertices are not included.
*
* Needed by the @p compute_support_points_laplace function. For
* <tt>dim=1</tt> and <tt>dim=2</tt> this function is empty.
*
* This function is made virtual in order to allow derived classes to choose
* shape function support points differently than the present class, which
* chooses the points as interpolation points on the boundary.
*/
virtual void
add_quad_support_points(const typename Triangulation<dim,spacedim>::cell_iterator &cell,
std::vector<Point<spacedim> > &a) const;
private:
virtual
typename Mapping<dim,spacedim>::InternalDataBase *
get_data (const UpdateFlags,
const Quadrature<dim> &quadrature) const;
virtual
typename Mapping<dim,spacedim>::InternalDataBase *
get_face_data (const UpdateFlags flags,
const Quadrature<dim-1>& quadrature) const;
virtual
typename Mapping<dim,spacedim>::InternalDataBase *
get_subface_data (const UpdateFlags flags,
const Quadrature<dim-1>& quadrature) const;
/**
* Compute shape values and/or derivatives.
*/
virtual void
compute_shapes_virtual (const std::vector<Point<dim> > &unit_points,
typename MappingQ1<dim,spacedim>::InternalData &data) const;
/**
* This function is needed by the constructor of
* <tt>MappingQ<dim,spacedim></tt> for <tt>dim=</tt> 2 and 3.
*
* For <tt>degree<4</tt> this function sets the @p laplace_on_quad_vector to
* the hardcoded data. For <tt>degree>=4</tt> and MappingQ<2> this vector is
* computed.
*
* For the definition of the @p laplace_on_quad_vector please refer to
* equation (8) of the `mapping' report.
*/
void
set_laplace_on_quad_vector(Table<2,double> &loqvs) const;
/**
* This function is needed by the constructor of <tt>MappingQ<3></tt>.
*
* For <tt>degree==2</tt> this function sets the @p laplace_on_hex_vector to
* the hardcoded data. For <tt>degree>2</tt> this vector is computed.
*
* For the definition of the @p laplace_on_hex_vector please refer to
* equation (8) of the `mapping' report.
*/
void set_laplace_on_hex_vector(Table<2,double> &lohvs) const;
/**
* Computes the <tt>laplace_on_quad(hex)_vector</tt>.
*
* Called by the <tt>set_laplace_on_quad(hex)_vector</tt> functions if the
* data is not yet hardcoded.
*
* For the definition of the <tt>laplace_on_quad(hex)_vector</tt> please
* refer to equation (8) of the `mapping' report.
*/
void compute_laplace_vector(Table<2,double> &lvs) const;
/**
* Takes a <tt>laplace_on_hex(quad)_vector</tt> and applies it to the vector
* @p a to compute the inner support points as a linear combination of the
* exterior points.
*
* The vector @p a initially contains the locations of the @p n_outer
* points, the @p n_inner computed inner points are appended.
*
* See equation (7) of the `mapping' report.
*/
void apply_laplace_vector(const Table<2,double> &lvs,
std::vector<Point<spacedim> > &a) const;
/**
* Computes the support points of the mapping.
*/
virtual void compute_mapping_support_points(
const typename Triangulation<dim,spacedim>::cell_iterator &cell,
std::vector<Point<spacedim> > &a) const;
/**
* Computes all support points of the mapping shape functions. The inner
* support points (ie. support points in quads for 2d, in hexes for 3d) are
* computed using the solution of a Laplace equation with the position of
* the outer support points as boundary values, in order to make the
* transformation as smooth as possible.
*/
void compute_support_points_laplace(
const typename Triangulation<dim,spacedim>::cell_iterator &cell,
std::vector<Point<spacedim> > &a) const;
/**
* Needed by the @p laplace_on_quad function (for <tt>dim==2</tt>). Filled
* by the constructor.
*
* Sizes:
* laplace_on_quad_vector.size()= number of inner unit_support_points
* laplace_on_quad_vector[i].size()= number of outer unit_support_points,
* i.e. unit_support_points on the boundary of the quad
*
* For the definition of this vector see equation (8) of the `mapping'
* report.
*/
Table<2,double> laplace_on_quad_vector;
/**
* Needed by the @p laplace_on_hex function (for <tt>dim==3</tt>). Filled by
* the constructor.
*
* For the definition of this vector see equation (8) of the `mapping'
* report.
*/
Table<2,double> laplace_on_hex_vector;
/**
* Exception.
*/
DeclException1 (ExcLaplaceVectorNotSet,
int,
<< "laplace_vector not set for degree=" << arg1 << ".");
/**
* Degree @p p of the polynomials used as shape functions for the Qp mapping
* of cells at the boundary.
*/
const unsigned int degree;
/**
* Number of inner mapping shape functions.
*/
const unsigned int n_inner;
/**
* Number of mapping shape functions on the boundary.
*/
const unsigned int n_outer;
/**
* Pointer to the @p dim-dimensional tensor product polynomials used as
* shape functions for the Qp mapping of cells at the boundary.
*/
const TensorProductPolynomials<dim> *tensor_pols;
/**
* Number of the Qp tensor product shape functions.
*/
const unsigned int n_shape_functions;
/**
* Mapping from lexicographic to to the Qp shape function numbering. Its
* size is @p dofs_per_cell.
*/
const std::vector<unsigned int> renumber;
/**
* If this flag is set @p true then @p MappingQ is used on all cells, not
* only on boundary cells.
*/
const bool use_mapping_q_on_all_cells;
/**
* An FE_Q object which is only needed in 3D, since it knows how to reorder
* shape functions/DoFs on non-standard faces. This is used to reorder
* support points in the same way. We could make this a pointer to prevent
* construction in 1D and 2D, but since memory and time requirements are not
* particularly high this seems unnecessary at the moment.
*/
const FE_Q<dim> feq;
/**
* Declare other MappingQ classes friends.
*/
template <int,int> friend class MappingQ;
};
/*@}*/
/* -------------- declaration of explicit specializations ------------- */
#ifndef DOXYGEN
template<> MappingQ<1>::MappingQ (const unsigned int,
const bool);
template<> MappingQ<1>::~MappingQ ();
template<>
void MappingQ<1>::compute_shapes_virtual (const std::vector<Point<1> > &unit_points,
MappingQ1<1>::InternalData &data) const;
template <>
void MappingQ<1>::set_laplace_on_quad_vector(Table<2,double> &) const;
template <>
void MappingQ<3>::set_laplace_on_hex_vector(Table<2,double> &lohvs) const;
template <>
void MappingQ<1>::compute_laplace_vector(Table<2,double> &) const;
template <>
void MappingQ<1>::add_line_support_points (const Triangulation<1>::cell_iterator &,
std::vector<Point<1> > &) const;
template <>
void MappingQ<1,2>::add_line_support_points (const Triangulation<1,2>::cell_iterator &,
std::vector<Point<2> > &) const;
template <>
void MappingQ<1,3>::add_line_support_points (const Triangulation<1,3>::cell_iterator &,
std::vector<Point<3> > &) const;
template<>
void MappingQ<3>::add_quad_support_points(const Triangulation<3>::cell_iterator &cell,
std::vector<Point<3> > &a) const;
#endif // DOXYGEN
DEAL_II_NAMESPACE_CLOSE
#endif
|