/usr/include/deal.II/base/polynomials_piecewise.h is in libdeal.ii-dev 8.1.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 | // ---------------------------------------------------------------------
// $Id: polynomials_piecewise.h 30040 2013-07-18 17:06:48Z maier $
//
// Copyright (C) 2000 - 2013 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------
#ifndef __deal2__polynomials_piecewise_h
#define __deal2__polynomials_piecewise_h
#include <deal.II/base/config.h>
#include <deal.II/base/exceptions.h>
#include <deal.II/base/subscriptor.h>
#include <deal.II/base/polynomial.h>
#include <deal.II/base/point.h>
#include <vector>
DEAL_II_NAMESPACE_OPEN
/**
* @addtogroup Polynomials
* @{
*/
/**
* A namespace in which classes relating to the description of 1d polynomial
* spaces are declared.
*/
namespace Polynomials
{
/**
* Definition of piecewise 1D polynomials for the unit interval. This space
* allows the description of interpolating polynomials on parts of the unit
* interval, similarly to the definition of finite element basis functions
* on the subdivided elements. This primary purpose of this class is to
* allow constructing FE_Q_iso_Q1 elements that put additional degrees of
* freedom into an equivalent of a refined mesh instead of higher order
* polynomials, which is useful when using mixed finite elements.
*
* @author Martin Kronbichler, 2013
*/
template <typename number>
class PiecewisePolynomial : public Subscriptor
{
public:
/**
* Constructor for Lagrange polynomial on an interval that is a subset of
* the unit interval. It uses a polynomial description that is scaled to
* the size of the subinterval compared to the unit interval, the total
* number of intervals (subdivisions), the current index of the interval
* as well as if the polynomial spans onto the next interval (e.g., if it
* lives on two neighboring intervals).
*
* If the number of intervals is one, the piecewise polynomial behaves
* exactly like a usual polynomial.
*/
PiecewisePolynomial (const Polynomial<number> &coefficients_on_interval,
const unsigned int n_intervals,
const unsigned int interval,
const bool spans_next_interval);
/**
* Return the value of this polynomial at the given point, evaluating the
* underlying polynomial. The polynomial evaluates to zero when outside of
* the given interval (and possible the next one to the right when it
* spans over that range).
*/
number value (const number x) const;
/**
* Return the values and the derivatives of the Polynomial at point
* <tt>x</tt>. <tt>values[i], i=0,...,values.size()-1</tt> includes the
* <tt>i</tt>th derivative. The number of derivatives to be computed is
* thus determined by the size of the array passed.
*
* Note that all the derivatives evaluate to zero at the border between
* intervals (assuming exact arithmetics) in the interior of the unit
* interval, as there is no unique gradient value in that case for a
* piecewise polynomial. This is not always desired (e.g., when evaluating
* jumps of gradients on the element boundary), but it is the user's
* responsibility to avoid evaluation at these points when it does not
* make sense.
*/
void value (const number x,
std::vector<number> &values) const;
/**
* Degree of the polynomial. This is the degree of the underlying base
* polynomial.
*/
unsigned int degree () const;
/**
* Write or read the data of this object to or from a stream for the
* purpose of serialization.
*/
template <class Archive>
void serialize (Archive &ar, const unsigned int version);
protected:
/**
* Underlying polynomial object that is scaled to a subinterval and
* concatenated accordingly.
*/
Polynomial<number> polynomial;
/**
* Stores the number of intervals that the unit interval is divided into.
*/
unsigned int n_intervals;
/**
* Stores the index of the current polynomial in the range of
* intervals.
*/
unsigned int interval;
/**
* Store if the polynomial spans over two adjacent intervals, i.e., the
* one given in subinterval and the next one.
*/
bool spans_two_intervals;
};
/**
* Generates a complete Lagrange basis on a subdivision of the unit interval
* in smaller intervals for a given degree on the subintervals and number of
* intervals.
*/
std::vector<PiecewisePolynomial<double> >
generate_complete_Lagrange_basis_on_subdivisions (const unsigned int n_subdivisions,
const unsigned int base_degree);
}
/** @} */
/* -------------------------- inline functions --------------------- */
namespace Polynomials
{
template <typename number>
inline
unsigned int
PiecewisePolynomial<number>::degree () const
{
return polynomial.degree();
}
template <typename number>
inline
number
PiecewisePolynomial<number>::value (const number x) const
{
AssertIndexRange (interval, n_intervals);
number y = x;
// shift polynomial if necessary
if (n_intervals > 1)
{
const number step = 1./n_intervals;
// polynomial spans over two intervals
if (spans_two_intervals == true)
{
const number offset = step * interval;
if (x<offset)
return 0;
else if (x>offset+step+step)
return 0;
else if (x<offset+step)
y = x-offset;
else
y = offset+step+step-x;
}
else
{
const number offset = step * interval;
if (x<offset || x>offset+step)
return 0;
else
y = x-offset;
}
return polynomial.value(y);
}
else
return polynomial.value(x);
}
template <typename number>
template <class Archive>
inline
void
PiecewisePolynomial<number>::serialize (Archive &ar, const unsigned int)
{
// forward to serialization function in the base class.
ar &static_cast<Subscriptor &>(*this);
ar &polynomial;
ar &n_intervals;
ar &interval;
ar &spans_two_intervals;
}
}
DEAL_II_NAMESPACE_CLOSE
#endif
|