/usr/include/deal.II/base/parallel.h is in libdeal.ii-dev 8.1.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 | // ---------------------------------------------------------------------
// $Id: parallel.h 31932 2013-12-08 02:15:54Z heister $
//
// Copyright (C) 2008 - 2013 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------
#ifndef __deal2__parallel_h
#define __deal2__parallel_h
#include <deal.II/base/config.h>
#include <deal.II/base/exceptions.h>
#include <deal.II/base/template_constraints.h>
#include <deal.II/base/synchronous_iterator.h>
#include <deal.II/base/std_cxx1x/tuple.h>
#include <deal.II/base/std_cxx1x/bind.h>
#include <deal.II/base/std_cxx1x/function.h>
#include <cstddef>
#ifdef DEAL_II_WITH_THREADS
# include <tbb/parallel_for.h>
# include <tbb/parallel_reduce.h>
# include <tbb/partitioner.h>
# include <tbb/blocked_range.h>
#endif
//TODO[WB]: allow calling functions to pass along a tbb::affinity_partitioner object to ensure that subsequent calls use the same cache lines
DEAL_II_NAMESPACE_OPEN
namespace parallel
{
namespace internal
{
/**
* Convert a function object of type F
* into an object that can be applied to
* all elements of a range of synchronous
* iterators.
*/
template <typename F>
struct Body
{
/**
* Constructor. Take and package the
* given function object.
*/
Body (const F &f)
:
f (f)
{}
template <typename Range>
void
operator () (const Range &range) const
{
for (typename Range::const_iterator p=range.begin();
p != range.end(); ++p)
apply (f, p.iterators);
}
private:
/**
* The stored function object.
*/
const F f;
/**
* Apply F to a set of iterators with
* two elements.
*/
template <typename I1, typename I2>
static
void
apply (const F &f,
const std_cxx1x::tuple<I1,I2> &p)
{
*std_cxx1x::get<1>(p) = f (*std_cxx1x::get<0>(p));
}
/**
* Apply F to a set of iterators with
* three elements.
*/
template <typename I1, typename I2, typename I3>
static
void
apply (const F &f,
const std_cxx1x::tuple<I1,I2,I3> &p)
{
*std_cxx1x::get<2>(p) = f (*std_cxx1x::get<0>(p),
*std_cxx1x::get<1>(p));
}
/**
* Apply F to a set of iterators with
* three elements.
*/
template <typename I1, typename I2,
typename I3, typename I4>
static
void
apply (const F &f,
const std_cxx1x::tuple<I1,I2,I3,I4> &p)
{
*std_cxx1x::get<3>(p) = f (*std_cxx1x::get<0>(p),
*std_cxx1x::get<1>(p),
*std_cxx1x::get<2>(p));
}
};
/**
* Take a function object and create a
* Body object from it. We do this in
* this helper function since
* alternatively we would have to specify
* the actual data type of F -- which for
* function objects is often
* extraordinarily complicated.
*/
template <typename F>
Body<F> make_body(const F &f)
{
return Body<F>(f);
}
}
/**
* An algorithm that performs the action
* <code>*out++ = predicate(*in++)</code>
* where the <code>in</code> iterator
* ranges over the given input range.
*
* This algorithm does pretty much what
* std::transform does. The difference is
* that the function can run in parallel
* when deal.II is configured to use
* multiple threads.
*
* If running in parallel, the iterator range
* is split into several chunks that are
* each packaged up as a task and given to
* the Threading Building Blocks scheduler
* to work on as compute resources are
* available. The function returns once all
* chunks have been worked on. The last
* argument denotes the minimum number of
* elements of the iterator range per
* task; the number must be
* large enough to amortize the startup
* cost of new tasks, and small enough to
* ensure that tasks can be
* reasonably load balanced.
*
* For a discussion of the kind of
* problems to which this function
* is applicable, see the
* @ref threads "Parallel computing with multiple processors"
* module.
*/
template <typename InputIterator,
typename OutputIterator,
typename Predicate>
void transform (const InputIterator &begin_in,
const InputIterator &end_in,
OutputIterator out,
Predicate &predicate,
const unsigned int grainsize)
{
#ifndef DEAL_II_WITH_THREADS
// make sure we don't get compiler
// warnings about unused arguments
(void) grainsize;
for (OutputIterator in = begin_in; in != end_in;)
*out++ = predicate (*in++);
#else
typedef std_cxx1x::tuple<InputIterator,OutputIterator> Iterators;
typedef SynchronousIterators<Iterators> SyncIterators;
Iterators x_begin (begin_in, out);
Iterators x_end (end_in, OutputIterator());
tbb::parallel_for (tbb::blocked_range<SyncIterators>(x_begin,
x_end,
grainsize),
internal::make_body (predicate),
tbb::auto_partitioner());
#endif
}
/**
* An algorithm that performs the action
* <code>*out++ = predicate(*in1++, *in2++)</code>
* where the <code>in1</code> iterator
* ranges over the given input
* range, using the parallel for
* operator of tbb.
*
* This algorithm does pretty much what
* std::transform does. The difference is
* that the function can run in parallel
* when deal.II is configured to use
* multiple threads.
*
* If running in parallel, the iterator range
* is split into several chunks that are
* each packaged up as a task and given to
* the Threading Building Blocks scheduler
* to work on as compute resources are
* available. The function returns once all
* chunks have been worked on. The last
* argument denotes the minimum number of
* elements of the iterator range per
* task; the number must be
* large enough to amortize the startup
* cost of new tasks, and small enough to
* ensure that tasks can be
* reasonably load balanced.
*
* For a discussion of the kind of
* problems to which this function
* is applicable, see the
* @ref threads "Parallel computing with multiple processors"
* module.
*/
template <typename InputIterator1,
typename InputIterator2,
typename OutputIterator,
typename Predicate>
void transform (const InputIterator1 &begin_in1,
const InputIterator1 &end_in1,
InputIterator2 in2,
OutputIterator out,
Predicate &predicate,
const unsigned int grainsize)
{
#ifndef DEAL_II_WITH_THREADS
// make sure we don't get compiler
// warnings about unused arguments
(void) grainsize;
for (OutputIterator in1 = begin_in1; in1 != end_in1;)
*out++ = predicate (*in1++, *in2++);
#else
typedef
std_cxx1x::tuple<InputIterator1,InputIterator2,OutputIterator>
Iterators;
typedef SynchronousIterators<Iterators> SyncIterators;
Iterators x_begin (begin_in1, in2, out);
Iterators x_end (end_in1, InputIterator2(), OutputIterator());
tbb::parallel_for (tbb::blocked_range<SyncIterators>(x_begin,
x_end,
grainsize),
internal::make_body (predicate),
tbb::auto_partitioner());
#endif
}
/**
* An algorithm that performs the action
* <code>*out++ = predicate(*in1++, *in2++, *in3++)</code>
* where the <code>in1</code> iterator
* ranges over the given input range.
*
* This algorithm does pretty much what
* std::transform does. The difference is
* that the function can run in parallel
* when deal.II is configured to use
* multiple threads.
*
* If running in parallel, the iterator range
* is split into several chunks that are
* each packaged up as a task and given to
* the Threading Building Blocks scheduler
* to work on as compute resources are
* available. The function returns once all
* chunks have been worked on. The last
* argument denotes the minimum number of
* elements of the iterator range per
* task; the number must be
* large enough to amortize the startup
* cost of new tasks, and small enough to
* ensure that tasks can be
* reasonably load balanced.
*
* For a discussion of the kind of
* problems to which this function
* is applicable, see the
* @ref threads "Parallel computing with multiple processors"
* module.
*/
template <typename InputIterator1,
typename InputIterator2,
typename InputIterator3,
typename OutputIterator,
typename Predicate>
void transform (const InputIterator1 &begin_in1,
const InputIterator1 &end_in1,
InputIterator2 in2,
InputIterator3 in3,
OutputIterator out,
Predicate &predicate,
const unsigned int grainsize)
{
#ifndef DEAL_II_WITH_THREADS
// make sure we don't get compiler
// warnings about unused arguments
(void) grainsize;
for (OutputIterator in1 = begin_in1; in1 != end_in1;)
*out++ = predicate (*in1++, *in2++, *in3++);
#else
typedef
std_cxx1x::tuple<InputIterator1,InputIterator2,InputIterator3,OutputIterator>
Iterators;
typedef SynchronousIterators<Iterators> SyncIterators;
Iterators x_begin (begin_in1, in2, in3, out);
Iterators x_end (end_in1, InputIterator2(),
InputIterator3(), OutputIterator());
tbb::parallel_for (tbb::blocked_range<SyncIterators>(x_begin,
x_end,
grainsize),
internal::make_body (predicate),
tbb::auto_partitioner());
#endif
}
namespace internal
{
#ifdef DEAL_II_WITH_THREADS
/**
* Take a range argument and call the
* given function with its begin and end.
*/
template <typename RangeType, typename Function>
void apply_to_subranges (const tbb::blocked_range<RangeType> &range,
const Function &f)
{
f (range.begin(), range.end());
}
#endif
}
/**
* This function applies the given function
* argument @p f to all elements in the range
* <code>[begin,end)</code> and may do so
* in parallel.
*
* However, in many cases it is not
* efficient to call a function on each
* element, so this function calls the
* given function object on sub-ranges. In
* other words: if the given range
* <code>[begin,end)</code> is smaller than
* grainsize or if multithreading is not
* enabled, then we call
* <code>f(begin,end)</code>; otherwise, we
* may execute, possibly in %parallel, a
* sequence of calls <code>f(b,e)</code>
* where <code>[b,e)</code> are
* subintervals of <code>[begin,end)</code>
* and the collection of calls we do to
* <code>f(.,.)</code> will happen on
* disjoint subintervals that collectively
* cover the original interval
* <code>[begin,end)</code>.
*
* Oftentimes, the called function will of
* course have to get additional
* information, such as the object to work
* on for a given value of the iterator
* argument. This can be achieved by
* <i>binding</i> certain arguments. For
* example, here is an implementation of a
* matrix-vector multiplication $y=Ax$ for
* a full matrix $A$ and vectors $x,y$:
* @code
* void matrix_vector_product (const FullMatrix &A,
* const Vector &x,
* Vector &y)
* {
* parallel::apply_to_subranges
* (0, A.n_rows(),
* std_cxx1x::bind (&mat_vec_on_subranges,
* std_cxx1x::_1, std_cxx1x::_2,
* std_cxx1x::cref(A),
* std_cxx1x::cref(x),
* std_cxx1x::ref(y)),
* 50);
* }
*
* void mat_vec_on_subranges (const unsigned int begin_row,
* const unsigned int end_row,
* const FullMatrix &A,
* const Vector &x,
* Vector &y)
* {
* for (unsigned int row=begin_row; row!=end_row; ++row)
* for (unsigned int col=0; col<x.size(); ++col)
* y(row) += A(row,col) * x(col);
* }
* @endcode
*
* Note how we use the
* <code>std_cxx1x::bind</code> function to
* convert
* <code>mat_vec_on_subranged</code> from a
* function that takes 5 arguments to one
* taking 2 by binding the remaining
* arguments (the modifiers
* <code>std_cxx1x::ref</code> and
* <code>std_cxx1x::cref</code> make sure
* that the enclosed variables are actually
* passed by reference and constant
* reference, rather than by value). The
* resulting function object requires only
* two arguments, begin_row and end_row,
* with all other arguments fixed.
*
* The code, if in single-thread mode, will
* call <code>mat_vec_on_subranges</code>
* on the entire range
* <code>[0,n_rows)</code> exactly once. In
* multi-threaded mode, however, it may be
* called multiple times on subranges of
* this interval, possibly allowing more
* than one CPU core to take care of part
* of the work.
*
* The @p grainsize argument (50 in the
* example above) makes sure that subranges
* do not become too small, to avoid
* spending more time on scheduling
* subranges to CPU resources than on doing
* actual work.
*
* For a discussion of the kind of
* problems to which this function
* is applicable, see also the
* @ref threads "Parallel computing with multiple processors"
* module.
*/
template <typename RangeType, typename Function>
void apply_to_subranges (const RangeType &begin,
const typename identity<RangeType>::type &end,
const Function &f,
const unsigned int grainsize)
{
#ifndef DEAL_II_WITH_THREADS
// make sure we don't get compiler
// warnings about unused arguments
(void) grainsize;
f (begin, end);
#else
tbb::parallel_for (tbb::blocked_range<RangeType>
(begin, end, grainsize),
std_cxx1x::bind (&internal::apply_to_subranges<RangeType,Function>,
std_cxx1x::_1,
std_cxx1x::cref(f)),
tbb::auto_partitioner());
#endif
}
/**
* This is a class specialized to for loops with a fixed range given by
* unsigned integers. This is an abstract base class that an actual worker
* function is derived from. There is a public function apply that issues a
* for loop in parallel, subdividing the work onto available processor cores
* whenever there is enough work to be done (i.e., the number of elements is
* larger than grain_size). Inside the function, a virtual function
* apply_to_subrange specifying a range of two integers <tt>[lower,
* upper)</tt> is called which needs to be defined in a derived class.
*
* The parallelization cases covered by this class are a subset of what is
* possible with the function apply_to_subranges (which also covers the case
* of more general iterators that might not be described by an integer
* range). However, for simple integer ranges one might prefer this class,
* like when there are many structurally similar loops, e.g., some simple
* copy or arithmetic operations on an array of pointers. In that case,
* apply_to_subranges will generate a lot of code (or rather, a lot of
* symbols) because it passes the long names generated by std::bind to the
* templated parallel for functions in TBB. This can considerably increase
* compile times and the size of the object code. Similarly, the incorrect
* use of std::bind often results in very cryptic error messages, which can
* be avoided by this class (only a virtual function needs to be defined in
* a derived class). Finally, the additional cost of a virtual function is
* negligible in the context of parallel functions: It is much more
* expensive to actually issue the work onto a thread, which in turn should
* be much less than the actual work done in the for loop.
*/
struct ParallelForInteger
{
/**
* Destructor. Made virtual to ensure that derived classes also
* have virtual destructors.
*/
virtual ~ParallelForInteger ();
/**
* This function runs the for loop over the
* given range <tt>[lower,upper)</tt>,
* possibly in parallel when end-begin is
* larger than the minimum parallel grain
* size. This function is marked const because
* it any operation that changes the data of a
* derived class will inherently not be
* thread-safe when several threads work with
* the same data simultaneously.
*/
void apply_parallel (const std::size_t begin,
const std::size_t end,
const std::size_t minimum_parallel_grain_size) const;
/**
* Virtual function for working on subrange to
* be defined in a derived class. This
* function is marked const because it any
* operation that changes the data of a
* derived class will inherently not be
* thread-safe when several threads work with
* the same data simultaneously.
*/
virtual void apply_to_subrange (const std::size_t,
const std::size_t) const = 0;
};
namespace internal
{
#ifdef DEAL_II_WITH_THREADS
/**
* A class that conforms to the Body
* requirements of the TBB
* parallel_reduce function. The first
* template argument denotes the type on
* which the reduction is to be done. The
* second denotes the type of the
* function object that shall be called
* for each subrange.
*/
template <typename ResultType,
typename Function>
struct ReductionOnSubranges
{
/**
* A variable that will hold the
* result of the reduction.
*/
ResultType result;
/**
* Constructor. Take the function
* object to call on each sub-range
* as well as the neutral element
* with respect to the reduction
* operation.
*
* The second argument denotes a
* function object that will be used
* to reduce the result of two
* computations into one number. An
* example if we want to simply
* accumulate integer results would
* be std::plus<int>().
*/
template <typename Reductor>
ReductionOnSubranges (const Function &f,
const Reductor &reductor,
const ResultType neutral_element = ResultType())
:
result (neutral_element),
f (f),
neutral_element (neutral_element),
reductor (reductor)
{}
/**
* Splitting constructor. See the TBB
* book for more details about this.
*/
ReductionOnSubranges (const ReductionOnSubranges &r,
tbb::split)
:
result (r.neutral_element),
f (r.f),
neutral_element (r.neutral_element),
reductor (r.reductor)
{}
/**
* Join operation: merge the results
* from computations on different
* sub-intervals.
*/
void join (const ReductionOnSubranges &r)
{
result = reductor(result, r.result);
}
/**
* Execute the given function on the
* specified range.
*/
template <typename RangeType>
void operator () (const tbb::blocked_range<RangeType> &range)
{
result = reductor(result,
f (range.begin(), range.end()));
}
private:
/**
* The function object to call on
* every sub-range.
*/
const Function f;
/**
* The neutral element with respect
* to the reduction operation. This
* is needed when calling the
* splitting constructor since we
* have to re-set the result variable
* in this case.
*/
const ResultType neutral_element;
/**
* The function object to be used to
* reduce the result of two calls
* into one number.
*/
const std_cxx1x::function<ResultType (ResultType, ResultType)> reductor;
};
#endif
}
/**
* This function works a lot like the
* apply_to_subranges(), but it allows to
* accumulate numerical results computed on
* each subrange into one number. The type
* of this number is given by the
* ResultType template argument that needs
* to be explicitly specified.
*
* An example of use of this function is to
* compute the value of the expression $x^T
* A x$ for a square matrix $A$ and a
* vector $x$. The sum over rows can be
* parallelized and the whole code might
* look like this:
* @code
* void matrix_norm (const FullMatrix &A,
* const Vector &x)
* {
* return
* std::sqrt
* (parallel::accumulate_from_subranges<double>
* (0, A.n_rows(),
* std_cxx1x::bind (&mat_norm_sqr_on_subranges,
* std_cxx1x::_1, std_cxx1x::_2,
* std_cxx1x::cref(A),
* std_cxx1x::cref(x)),
* 50);
* }
*
* double
* mat_norm_sqr_on_subranges (const unsigned int begin_row,
* const unsigned int end_row,
* const FullMatrix &A,
* const Vector &x)
* {
* double norm_sqr = 0;
* for (unsigned int row=begin_row; row!=end_row; ++row)
* for (unsigned int col=0; col<x.size(); ++col)
* norm_sqr += x(row) * A(row,col) * x(col);
* return norm_sqr;
* }
* @endcode
*
* Here,
* <code>mat_norm_sqr_on_subranges</code>
* is called on the entire range
* <code>[0,A.n_rows())</code> if this
* range is less than the minimum grainsize
* (above chosen as 50) or if deal.II is
* configured to not use
* multithreading. Otherwise, it may be
* called on subsets of the given range,
* with results from the individual
* subranges accumulated internally.
*
* @warning If ResultType is a floating point
* type, then accumulation is not an
* associative operation. In other words,
* if the given function object is called
* three times on three subranges,
* returning values $a,b,c$, then the
* returned result of this function is
* $(a+b)+c$. However, depending on how the
* three sub-tasks are distributed on
* available CPU resources, the result may
* also be $(a+c)+b$ or any other
* permutation; because floating point
* addition is not associative (as opposed, of
* course, to addition of real %numbers),
* the result of invoking this function
* several times may differ on the order of
* round-off.
*
* For a discussion of the kind of
* problems to which this function
* is applicable, see also the
* @ref threads "Parallel computing with multiple processors"
* module.
*/
template <typename ResultType, typename RangeType, typename Function>
ResultType accumulate_from_subranges (const Function &f,
const RangeType &begin,
const typename identity<RangeType>::type &end,
const unsigned int grainsize)
{
#ifndef DEAL_II_WITH_THREADS
// make sure we don't get compiler
// warnings about unused arguments
(void) grainsize;
return f(begin,end);
#else
internal::ReductionOnSubranges<ResultType,Function>
reductor (f, std::plus<ResultType>(), 0);
tbb::parallel_reduce (tbb::blocked_range<RangeType>(begin, end, grainsize),
reductor,
tbb::auto_partitioner());
return reductor.result;
#endif
}
}
namespace internal
{
namespace Vector
{
/**
* If we do computations on vectors in
* parallel (say, we add two vectors to
* get a third, and we do the loop over
* all elements in parallel), then this
* variable determines the minimum number
* of elements for which it is profitable
* to split a range of elements any
* further to distribute to different
* threads.
*
* This variable is available as
* a global writable variable in
* order to allow the testsuite
* to also test the parallel
* case. By default, it is set to
* several thousand elements,
* which is a case that the
* testsuite would not normally
* encounter. As a consequence,
* in the testsuite we set it to
* one -- a value that's hugely
* unprofitable but definitely
* tests parallel operations.
*/
extern unsigned int minimum_parallel_grain_size;
}
namespace SparseMatrix
{
/**
* Like
* internal::Vector::minimum_parallel_grain_size,
* but now denoting the number of rows of
* a matrix that should be worked on as a
* minimum.
*/
extern unsigned int minimum_parallel_grain_size;
}
} // end of namespace internal
/* --------------------------- inline functions ------------------------- */
namespace parallel
{
#ifdef DEAL_II_WITH_THREADS
namespace internal
{
/**
* This is the function actually called by TBB for the ParallelForInteger
* class.
*/
struct ParallelForWrapper
{
ParallelForWrapper (const parallel::ParallelForInteger &worker)
:
worker_ (worker)
{}
void operator() (const tbb::blocked_range<std::size_t> &range) const
{
worker_.apply_to_subrange (range.begin(), range.end());
}
const parallel::ParallelForInteger &worker_;
};
}
#endif
inline
ParallelForInteger::~ParallelForInteger ()
{}
inline
void
ParallelForInteger::apply_parallel (const std::size_t begin,
const std::size_t end,
const std::size_t minimum_parallel_grain_size) const
{
#ifndef DEAL_II_WITH_THREADS
// make sure we don't get compiler
// warnings about unused arguments
(void) minimum_parallel_grain_size;
apply_to_subrange (begin, end);
#else
internal::ParallelForWrapper worker(*this);
tbb::parallel_for (tbb::blocked_range<std::size_t>
(begin, end, minimum_parallel_grain_size),
worker,
tbb::auto_partitioner());
#endif
}
} // end of namespace parallel
DEAL_II_NAMESPACE_CLOSE
#endif
|