/usr/include/deal.II/base/function_lib.h is in libdeal.ii-dev 8.1.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 | // ---------------------------------------------------------------------
// $Id: function_lib.h 30036 2013-07-18 16:55:32Z maier $
//
// Copyright (C) 1999 - 2013 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------
#ifndef __deal2__function_lib_h
#define __deal2__function_lib_h
#include <deal.II/base/config.h>
#include <deal.II/base/function.h>
#include <deal.II/base/point.h>
DEAL_II_NAMESPACE_OPEN
/**
* Namespace implementing some concrete classes derived from the
* Function class that describe actual functions. This is rather
* a collection of classes that we have needed for our own programs
* once and thought might be useful to others as well at some
* point.
*
* @ingroup functions
*/
namespace Functions
{
/**
* The distance to the origin squared.
*
* This function returns the square norm of the radius vector of a point.
*
* Together with the function, its derivatives and Laplacian are defined.
*
* @ingroup functions
* @author: Guido Kanschat, 1999
*/
template<int dim>
class SquareFunction : public Function<dim>
{
public:
virtual double value (const Point<dim> &p,
const unsigned int component = 0) const;
virtual void vector_value (const Point<dim> &p,
Vector<double> &values) const;
virtual void value_list (const std::vector<Point<dim> > &points,
std::vector<double> &values,
const unsigned int component = 0) const;
virtual Tensor<1,dim> gradient (const Point<dim> &p,
const unsigned int component = 0) const;
virtual void vector_gradient (const Point<dim> &p,
std::vector<Tensor<1,dim> > &gradient) const;
virtual void gradient_list (const std::vector<Point<dim> > &points,
std::vector<Tensor<1,dim> > &gradients,
const unsigned int component = 0) const;
virtual double laplacian (const Point<dim> &p,
const unsigned int component = 0) const;
virtual void laplacian_list (const std::vector<Point<dim> > &points,
std::vector<double> &values,
const unsigned int component = 0) const;
};
/**
* The function <tt>xy</tt> in 2d and 3d, not implemented in 1d.
* This function serves as an example for
* a vanishing Laplacian.
*
* @ingroup functions
* @author: Guido Kanschat, 2000
*/
template<int dim>
class Q1WedgeFunction : public Function<dim>
{
public:
virtual double value (const Point<dim> &p,
const unsigned int component = 0) const;
virtual void value_list (const std::vector<Point<dim> > &points,
std::vector<double> &values,
const unsigned int component = 0) const;
virtual void vector_value_list (const std::vector<Point<dim> > &points,
std::vector<Vector<double> > &values) const;
virtual Tensor<1,dim> gradient (const Point<dim> &p,
const unsigned int component = 0) const;
virtual void gradient_list (const std::vector<Point<dim> > &points,
std::vector<Tensor<1,dim> > &gradients,
const unsigned int component = 0) const;
virtual void vector_gradient_list (const std::vector<Point<dim> > &,
std::vector<std::vector<Tensor<1,dim> > > &) const;
/**
* Laplacian of the function at one point.
*/
virtual double laplacian (const Point<dim> &p,
const unsigned int component = 0) const;
/**
* Laplacian of the function at multiple points.
*/
virtual void laplacian_list (const std::vector<Point<dim> > &points,
std::vector<double> &values,
const unsigned int component = 0) const;
};
/**
* d-quadratic pillow on the unit hypercube.
*
* This is a function for testing the implementation. It has zero Dirichlet
* boundary values on the domain $(-1,1)^d$. In the inside, it is the
* product of $1-x_i^2$ over all space dimensions.
*
* Providing a non-zero argument to the constructor, the whole function
* can be offset by a constant.
*
* Together with the function, its derivatives and Laplacian are defined.
*
* @ingroup functions
* @author: Guido Kanschat, 1999
*/
template<int dim>
class PillowFunction : public Function<dim>
{
public:
/**
* Constructor. Provide a
* constant that will be added to
* each function value.
*/
PillowFunction (const double offset=0.);
/**
* The value at a single point.
*/
virtual double value (const Point<dim> &p,
const unsigned int component = 0) const;
/**
* Values at multiple points.
*/
virtual void value_list (const std::vector<Point<dim> > &points,
std::vector<double> &values,
const unsigned int component = 0) const;
/**
* Gradient at a single point.
*/
virtual Tensor<1,dim> gradient (const Point<dim> &p,
const unsigned int component = 0) const;
/**
* Gradients at multiple points.
*/
virtual void gradient_list (const std::vector<Point<dim> > &points,
std::vector<Tensor<1,dim> > &gradients,
const unsigned int component = 0) const;
/**
* Laplacian at a single point.
*/
virtual double laplacian (const Point<dim> &p,
const unsigned int component = 0) const;
/**
* Laplacian at multiple points.
*/
virtual void laplacian_list (const std::vector<Point<dim> > &points,
std::vector<double> &values,
const unsigned int component = 0) const;
private:
const double offset;
};
/**
* Cosine-shaped pillow function.
* This is another function with zero boundary values on $[-1,1]^d$. In the interior
* it is the product of $\cos(\pi/2 x_i)$.
*
* @ingroup functions
* @author Guido Kanschat, 1999
*/
template<int dim>
class CosineFunction : public Function<dim>
{
public:
/**
* Constructor which allows to
* optionally generate a vector
* valued cosine function with
* the same value in each
* component.
*/
CosineFunction (const unsigned int n_components = 1);
virtual double value (const Point<dim> &p,
const unsigned int component = 0) const;
virtual void value_list (const std::vector<Point<dim> > &points,
std::vector<double> &values,
const unsigned int component = 0) const;
virtual void vector_value_list (const std::vector<Point<dim> > &points,
std::vector<Vector<double> > &values) const;
virtual Tensor<1,dim> gradient (const Point<dim> &p,
const unsigned int component = 0) const;
virtual void gradient_list (const std::vector<Point<dim> > &points,
std::vector<Tensor<1,dim> > &gradients,
const unsigned int component = 0) const;
virtual double laplacian (const Point<dim> &p,
const unsigned int component = 0) const;
virtual void laplacian_list (const std::vector<Point<dim> > &points,
std::vector<double> &values,
const unsigned int component = 0) const;
/**
* Second derivatives at a
* single point.
*/
virtual Tensor<2,dim> hessian (const Point<dim> &p,
const unsigned int component = 0) const;
/**
* Second derivatives at
* multiple points.
*/
virtual void hessian_list (const std::vector<Point<dim> > &points,
std::vector<Tensor<2,dim> > &hessians,
const unsigned int component = 0) const;
};
/**
* Gradient of the cosine-shaped pillow function.
*
* This is a vector-valued function with @p dim components, the
* gradient of CosineFunction. On the square [-1,1], it has tangential
* boundary conditions zero. Thus, it can be used to test
* implementations of Maxwell operators without bothering about
* boundary terms.
*
* @ingroup functions
* @author Guido Kanschat, 2010
*/
template<int dim>
class CosineGradFunction : public Function<dim>
{
public:
/**
* Constructor, creating a
* function with @p dim components.
*/
CosineGradFunction ();
virtual double value (const Point<dim> &p,
const unsigned int component) const;
virtual void vector_value (const Point<dim> &p,
Vector<double> &values) const;
virtual void value_list (const std::vector<Point<dim> > &points,
std::vector<double> &values,
const unsigned int component) const;
virtual void vector_value_list (const std::vector<Point<dim> > &points,
std::vector<Vector<double> > &values) const;
virtual Tensor<1,dim> gradient (const Point<dim> &p,
const unsigned int component) const;
virtual void gradient_list (const std::vector<Point<dim> > &points,
std::vector<Tensor<1,dim> > &gradients,
const unsigned int component) const;
virtual void vector_gradient_list (const std::vector<Point<dim> > &points,
std::vector<std::vector<Tensor<1,dim> > > &gradients) const;
virtual double laplacian (const Point<dim> &p,
const unsigned int component) const;
};
/**
* Product of exponential functions in each coordinate direction.
*
* @ingroup functions
* @author Guido Kanschat, 1999
*/
template<int dim>
class ExpFunction : public Function<dim>
{
public:
/**
* The value at a single point.
*/
virtual double value (const Point<dim> &p,
const unsigned int component = 0) const;
/**
* Values at multiple points.
*/
virtual void value_list (const std::vector<Point<dim> > &points,
std::vector<double> &values,
const unsigned int component = 0) const;
/**
* Gradient at a single point.
*/
virtual Tensor<1,dim> gradient (const Point<dim> &p,
const unsigned int component = 0) const;
/**
* Gradients at multiple points.
*/
virtual void gradient_list (const std::vector<Point<dim> > &points,
std::vector<Tensor<1,dim> > &gradients,
const unsigned int component = 0) const;
/**
* Laplacian at a single point.
*/
virtual double laplacian (const Point<dim> &p,
const unsigned int component = 0) const;
/**
* Laplacian at multiple points.
*/
virtual void laplacian_list (const std::vector<Point<dim> > &points,
std::vector<double> &values,
const unsigned int component = 0) const;
};
/**
* Harmonic singularity on the L-shaped domain in 2D.
*
* @ingroup functions
* @author Guido Kanschat
* @date 1999
*/
class LSingularityFunction : public Function<2>
{
public:
virtual double value (const Point<2> &p,
const unsigned int component = 0) const;
virtual void value_list (const std::vector<Point<2> > &points,
std::vector<double> &values,
const unsigned int component = 0) const;
virtual void vector_value_list (const std::vector<Point<2> > &points,
std::vector<Vector<double> > &values) const;
virtual Tensor<1,2> gradient (const Point<2> &p,
const unsigned int component = 0) const;
virtual void gradient_list (const std::vector<Point<2> > &points,
std::vector<Tensor<1,2> > &gradients,
const unsigned int component = 0) const;
virtual void vector_gradient_list (const std::vector<Point<2> > &,
std::vector<std::vector<Tensor<1,2> > > &) const;
virtual double laplacian (const Point<2> &p,
const unsigned int component = 0) const;
virtual void laplacian_list (const std::vector<Point<2> > &points,
std::vector<double> &values,
const unsigned int component = 0) const;
};
/**
* Gradient of the harmonic singularity on the L-shaped domain in 2D.
*
* The gradient of LSingularityFunction, which is a vector valued
* function with vanishing curl and divergence.
*
* @ingroup functions
* @author Guido Kanschat, 2010
*/
class LSingularityGradFunction : public Function<2>
{
public:
/**
* Default constructor setting
* the dimension to 2.
*/
LSingularityGradFunction ();
virtual double value (const Point<2> &p,
const unsigned int component) const;
virtual void value_list (const std::vector<Point<2> > &points,
std::vector<double> &values,
const unsigned int component) const;
virtual void vector_value_list (const std::vector<Point<2> > &points,
std::vector<Vector<double> > &values) const;
virtual Tensor<1,2> gradient (const Point<2> &p,
const unsigned int component) const;
virtual void gradient_list (const std::vector<Point<2> > &points,
std::vector<Tensor<1,2> > &gradients,
const unsigned int component) const;
virtual void vector_gradient_list (const std::vector<Point<2> > &,
std::vector<std::vector<Tensor<1,2> > > &) const;
virtual double laplacian (const Point<2> &p,
const unsigned int component) const;
virtual void laplacian_list (const std::vector<Point<2> > &points,
std::vector<double> &values,
const unsigned int component) const;
};
/**
* Singularity on the slit domain in 2D and 3D.
*
* @ingroup functions
* @author Guido Kanschat, 1999, 2006
*/
template <int dim>
class SlitSingularityFunction : public Function<dim>
{
public:
virtual double value (const Point<dim> &p,
const unsigned int component = 0) const;
virtual void value_list (const std::vector<Point<dim> > &points,
std::vector<double> &values,
const unsigned int component = 0) const;
virtual void vector_value_list (const std::vector<Point<dim> > &points,
std::vector<Vector<double> > &values) const;
virtual Tensor<1,dim> gradient (const Point<dim> &p,
const unsigned int component = 0) const;
virtual void gradient_list (const std::vector<Point<dim> > &points,
std::vector<Tensor<1,dim> > &gradients,
const unsigned int component = 0) const;
virtual void vector_gradient_list (const std::vector<Point<dim> > &,
std::vector<std::vector<Tensor<1,dim> > > &) const;
virtual double laplacian (const Point<dim> &p,
const unsigned int component = 0) const;
virtual void laplacian_list (const std::vector<Point<dim> > &points,
std::vector<double> &values,
const unsigned int component = 0) const;
};
/**
* Singularity on the slit domain with one Neumann boundary in 2D.
*
* @ingroup functions
* @author Guido Kanschat, 2002
*/
class SlitHyperSingularityFunction : public Function<2>
{
public:
virtual double value (const Point<2> &p,
const unsigned int component = 0) const;
virtual void value_list (const std::vector<Point<2> > &points,
std::vector<double> &values,
const unsigned int component = 0) const;
virtual void vector_value_list (const std::vector<Point<2> > &points,
std::vector<Vector<double> > &values) const;
virtual Tensor<1,2> gradient (const Point<2> &p,
const unsigned int component = 0) const;
virtual void gradient_list (const std::vector<Point<2> > &points,
std::vector<Tensor<1,2> > &gradients,
const unsigned int component = 0) const;
virtual void vector_gradient_list (const std::vector<Point<2> > &,
std::vector<std::vector<Tensor<1,2> > > &) const;
virtual double laplacian (const Point<2> &p,
const unsigned int component = 0) const;
virtual void laplacian_list (const std::vector<Point<2> > &points,
std::vector<double> &values,
const unsigned int component = 0) const;
};
/**
* A jump in x-direction transported into some direction.
*
* If the advection is parallel to the y-axis, the function is
* <tt>-atan(sx)</tt>, where <tt>s</tt> is the steepness parameter provided in
* the constructor.
*
* For different advection directions, this function will be turned in
* the parameter space.
*
* Together with the function, its derivatives and Laplacian are defined.
*
* @ingroup functions
* @author: Guido Kanschat, 2000
*/
template<int dim>
class JumpFunction : public Function<dim>
{
public:
/**
* Constructor. Provide the
* advection direction here and
* the steepness of the slope.
*/
JumpFunction (const Point<dim> &direction,
const double steepness);
/**
* Function value at one point.
*/
virtual double value (const Point<dim> &p,
const unsigned int component = 0) const;
/**
* Function values at multiple
* points.
*/
virtual void value_list (const std::vector<Point<dim> > &points,
std::vector<double> &values,
const unsigned int component = 0) const;
/**
* Gradient at one point.
*/
virtual Tensor<1,dim> gradient (const Point<dim> &p,
const unsigned int component = 0) const;
/**
Gradients at multiple points.
*/
virtual void gradient_list (const std::vector<Point<dim> > &points,
std::vector<Tensor<1,dim> > &gradients,
const unsigned int component = 0) const;
/**
* Laplacian of the function at one point.
*/
virtual double laplacian (const Point<dim> &p,
const unsigned int component = 0) const;
/**
* Laplacian of the function at multiple points.
*/
virtual void laplacian_list (const std::vector<Point<dim> > &points,
std::vector<double> &values,
const unsigned int component = 0) const;
/**
* Determine an estimate for
* the memory consumption (in
* bytes) of this
* object. Since sometimes
* the size of objects can
* not be determined exactly
* (for example: what is the
* memory consumption of an
* STL <tt>std::map</tt> type with a
* certain number of
* elements?), this is only
* an estimate. however often
* quite close to the true
* value.
*/
std::size_t memory_consumption () const;
protected:
/**
* Advection vector.
*/
const Point<dim> direction;
/**
* Steepness (maximal derivative)
* of the slope.
*/
const double steepness;
/**
* Advection angle.
*/
double angle;
/**
* Sine of <tt>angle</tt>.
*/
double sine;
/**
* Cosine of <tt>angle</tt>.
*/
double cosine;
};
/**
* Given a wavenumber vector generate a cosine function. The
* wavenumber coefficient is given as a $d$-dimensional point $k$
* in Fourier space, and the function is then recovered as $f(x) =
* \cos(\sum_i k_i x_i) = Re(\exp(i k.x))$.
*
* The class has its name from the fact that it resembles one
* component of a Fourier cosine decomposition.
*
* @ingroup functions
* @author Wolfgang Bangerth, 2001
*/
template <int dim>
class FourierCosineFunction : public Function<dim>
{
public:
/**
* Constructor. Take the Fourier
* coefficients in each space
* direction as argument.
*/
FourierCosineFunction (const Point<dim> &fourier_coefficients);
/**
* Return the value of the
* function at the given
* point. Unless there is only
* one component (i.e. the
* function is scalar), you
* should state the component you
* want to have evaluated; it
* defaults to zero, i.e. the
* first component.
*/
virtual double value (const Point<dim> &p,
const unsigned int component = 0) const;
/**
* Return the gradient of the
* specified component of the
* function at the given point.
*/
virtual Tensor<1,dim> gradient (const Point<dim> &p,
const unsigned int component = 0) const;
/**
* Compute the Laplacian of a
* given component at point <tt>p</tt>.
*/
virtual double laplacian (const Point<dim> &p,
const unsigned int component = 0) const;
private:
/**
* Stored Fourier coefficients.
*/
const Point<dim> fourier_coefficients;
};
/**
* Given a wavenumber vector generate a sine function. The
* wavenumber coefficient is given as a $d$-dimensional point $k$
* in Fourier space, and the function is then recovered as $f(x) =
* \sin(\sum_i k_i x_i) = Im(\exp(i k.x))$.
*
* The class has its name from the fact that it resembles one
* component of a Fourier sine decomposition.
*
* @ingroup functions
* @author Wolfgang Bangerth, 2001
*/
template <int dim>
class FourierSineFunction : public Function<dim>
{
public:
/**
* Constructor. Take the Fourier
* coefficients in each space
* direction as argument.
*/
FourierSineFunction (const Point<dim> &fourier_coefficients);
/**
* Return the value of the
* function at the given
* point. Unless there is only
* one component (i.e. the
* function is scalar), you
* should state the component you
* want to have evaluated; it
* defaults to zero, i.e. the
* first component.
*/
virtual double value (const Point<dim> &p,
const unsigned int component = 0) const;
/**
* Return the gradient of the
* specified component of the
* function at the given point.
*/
virtual Tensor<1,dim> gradient (const Point<dim> &p,
const unsigned int component = 0) const;
/**
* Compute the Laplacian of a
* given component at point <tt>p</tt>.
*/
virtual double laplacian (const Point<dim> &p,
const unsigned int component = 0) const;
private:
/**
* Stored Fourier coefficients.
*/
const Point<dim> fourier_coefficients;
};
/**
* Given a sequence of wavenumber vectors and weights generate a sum
* of sine functions. Each wavenumber coefficient is given as a
* $d$-dimensional point $k$ in Fourier space, and the entire
* function is then recovered as
* $f(x) = \sum_j w_j sin(\sum_i k_i x_i) = Im(\sum_j w_j \exp(i k.x))$.
*
* @ingroup functions
* @author Wolfgang Bangerth, 2001
*/
template <int dim>
class FourierSineSum : public Function<dim>
{
public:
/**
* Constructor. Take the Fourier
* coefficients in each space
* direction as argument.
*/
FourierSineSum (const std::vector<Point<dim> > &fourier_coefficients,
const std::vector<double> &weights);
/**
* Return the value of the
* function at the given
* point. Unless there is only
* one component (i.e. the
* function is scalar), you
* should state the component you
* want to have evaluated; it
* defaults to zero, i.e. the
* first component.
*/
virtual double value (const Point<dim> &p,
const unsigned int component = 0) const;
/**
* Return the gradient of the
* specified component of the
* function at the given point.
*/
virtual Tensor<1,dim> gradient (const Point<dim> &p,
const unsigned int component = 0) const;
/**
* Compute the Laplacian of a
* given component at point <tt>p</tt>.
*/
virtual double laplacian (const Point<dim> &p,
const unsigned int component = 0) const;
private:
/**
* Stored Fourier coefficients
* and weights.
*/
const std::vector<Point<dim> > fourier_coefficients;
const std::vector<double> weights;
};
/**
* Given a sequence of wavenumber vectors and weights generate a sum
* of cosine functions. Each wavenumber coefficient is given as a
* $d$-dimensional point $k$ in Fourier space, and the entire
* function is then recovered as
* $f(x) = \sum_j w_j cos(\sum_i k_i x_i) = Re(\sum_j w_j \exp(i k.x))$.
*
* @ingroup functions
* @author Wolfgang Bangerth, 2001
*/
template <int dim>
class FourierCosineSum : public Function<dim>
{
public:
/**
* Constructor. Take the Fourier
* coefficients in each space
* direction as argument.
*/
FourierCosineSum (const std::vector<Point<dim> > &fourier_coefficients,
const std::vector<double> &weights);
/**
* Return the value of the
* function at the given
* point. Unless there is only
* one component (i.e. the
* function is scalar), you
* should state the component you
* want to have evaluated; it
* defaults to zero, i.e. the
* first component.
*/
virtual double value (const Point<dim> &p,
const unsigned int component = 0) const;
/**
* Return the gradient of the
* specified component of the
* function at the given point.
*/
virtual Tensor<1,dim> gradient (const Point<dim> &p,
const unsigned int component = 0) const;
/**
* Compute the Laplacian of a
* given component at point <tt>p</tt>.
*/
virtual double laplacian (const Point<dim> &p,
const unsigned int component = 0) const;
private:
/**
* Stored Fourier coefficients
* and weights.
*/
const std::vector<Point<dim> > fourier_coefficients;
const std::vector<double> weights;
};
/**
* Base function for cut-off function. This class stores the center
* and the radius of the supporting ball of a cut-off function. It
* also stores the number of the non-zero component, if the function
* is vector-valued.
*
* @ingroup functions
* @author Guido Kanschat, 2002
*/
template <int dim>
class CutOffFunctionBase : public Function<dim>
{
public:
/**
* Value used in the
* constructor of this and
* derived classes to denote
* that no component is
* selected.
*/
static const unsigned int no_component = numbers::invalid_unsigned_int;
/**
* Constructor. Arguments are the
* center of the ball and its
* radius.
*
* If an argument <tt>select</tt> is
* given and not -1, the
* cut-off function will be
* non-zero for this component
* only.
*/
CutOffFunctionBase (const double radius = 1.,
const Point<dim> = Point<dim>(),
const unsigned int n_components = 1,
const unsigned int select = CutOffFunctionBase<dim>::no_component);
/**
* Move the center of the ball
* to new point <tt>p</tt>.
*/
void new_center (const Point<dim> &p);
/**
* Set the radius of the ball to <tt>r</tt>.
*/
void new_radius (const double r);
protected:
/**
* Center of the integration ball.
*/
Point<dim> center;
/**
* Radius of the ball.
*/
double radius;
/**
* Component selected. If
* <tt>no_component</tt>, the function is
* the same in all components.
*/
const unsigned int selected;
};
/**
* Cut-off function in L-infinity for an arbitrary ball. This
* function is the characteristic function of a ball around <tt>center</tt>
* with a specified <tt>radius</tt>, that is,
* \f[
* f = \chi(B_r(c)).
* \f]
* If vector valued, it can be restricted
* to a single component.
*
* @ingroup functions
* @author Guido Kanschat, 2001, 2002
*/
template<int dim>
class CutOffFunctionLinfty : public CutOffFunctionBase<dim>
{
public:
/**
* Constructor. Arguments are the
* center of the ball and its
* radius.
*
* If an argument <tt>select</tt> is
* given and not -1, the
* cut-off function will be
* non-zero for this component
* only.
*/
CutOffFunctionLinfty (const double radius = 1.,
const Point<dim> = Point<dim>(),
const unsigned int n_components = 1,
const unsigned int select = CutOffFunctionBase<dim>::no_component);
/**
* Function value at one point.
*/
virtual double value (const Point<dim> &p,
const unsigned int component = 0) const;
/**
* Function values at multiple points.
*/
virtual void value_list (const std::vector<Point<dim> > &points,
std::vector<double> &values,
const unsigned int component = 0) const;
/**
* Function values at multiple points.
*/
virtual void vector_value_list (const std::vector<Point<dim> > &points,
std::vector<Vector<double> > &values) const;
};
/**
* Cut-off function for an arbitrary ball. This function is a cone
* with support in a ball of certain <tt>radius</tt> around <tt>center</tt>. The
* maximum value is 1. If vector valued, it can be restricted
* to a single component.
*
* @ingroup functions
* @author Guido Kanschat, 2001, 2002
*/
template<int dim>
class CutOffFunctionW1 : public CutOffFunctionBase<dim>
{
public:
/**
* Constructor. Arguments are the
* center of the ball and its
* radius.
* radius.
*
* If an argument <tt>select</tt> is
* given, the cut-off function
* will be non-zero for this
* component only.
*/
CutOffFunctionW1 (const double radius = 1.,
const Point<dim> = Point<dim>(),
const unsigned int n_components = 1,
const unsigned int select = CutOffFunctionBase<dim>::no_component);
/**
* Function value at one point.
*/
virtual double value (const Point<dim> &p,
const unsigned int component = 0) const;
/**
* Function values at multiple points.
*/
virtual void value_list (const std::vector<Point<dim> > &points,
std::vector<double> &values,
const unsigned int component = 0) const;
/**
* Function values at multiple points.
*/
virtual void vector_value_list (const std::vector<Point<dim> > &points,
std::vector<Vector<double> > &values) const;
};
/**
* Cut-off function for an arbitrary ball. This is the traditional
* cut-off function in C-infinity for a ball of certain <tt>radius</tt>
* around <tt>center</tt>, $f(r)=exp(1-1/(1-r**2/s**2))$, where $r$ is the
* distance to the center, and $s$ is the radius of the sphere. If
* vector valued, it can be restricted to a single component.
*
* @ingroup functions
* @author Guido Kanschat, 2001, 2002
*/
template<int dim>
class CutOffFunctionCinfty : public CutOffFunctionBase<dim>
{
public:
/**
* Constructor. Arguments are the
* center of the ball and its
* radius.
* radius.
*
* If an argument <tt>select</tt> is
* given, the cut-off function
* will be non-zero for this
* component only.
*/
CutOffFunctionCinfty (const double radius = 1.,
const Point<dim> = Point<dim>(),
const unsigned int n_components = 1,
const unsigned int select = CutOffFunctionBase<dim>::no_component);
/**
* Function value at one point.
*/
virtual double value (const Point<dim> &p,
const unsigned int component = 0) const;
/**
* Function values at multiple points.
*/
virtual void value_list (const std::vector<Point<dim> > &points,
std::vector<double> &values,
const unsigned int component = 0) const;
/**
* Function values at multiple points.
*/
virtual void vector_value_list (const std::vector<Point<dim> > &points,
std::vector<Vector<double> > &values) const;
/**
* Function gradient at one point.
*/
virtual Tensor<1,dim> gradient (const Point<dim> &p,
const unsigned int component = 0) const;
};
/**
* A class that represents a function object for a monomial. Monomials are
* polynomials with only a single term, i.e. in 1-d they have the form
* $x^\alpha$, in 2-d the form $x_1^{\alpha_1}x_2^{\alpha_2}$, and in 3-d
* $x_1^{\alpha_1}x_2^{\alpha_2}x_3^{\alpha_3}$. Monomials are therefore
* described by a $dim$-tuple of exponents. Consequently, the class's
* constructor takes a Tensor<1,dim> to describe the set of exponents. Most of
* the time these exponents will of course be integers, but real exponents are
* of course equally valid.
*
* @author Wolfgang Bangerth, 2006
*/
template <int dim>
class Monomial : public Function<dim>
{
public:
/**
* Constructor. The first argument is
* explained in the general description
* of the class. The second argument
* denotes the number of vector
* components this object shall
* represent. All vector components
* will have the same value.
*/
Monomial (const Tensor<1,dim> &exponents,
const unsigned int n_components = 1);
/**
* Function value at one point.
*/
virtual double value (const Point<dim> &p,
const unsigned int component = 0) const;
/**
* Return all components of a
* vector-valued function at a
* given point.
*
* <tt>values</tt> shall have the right
* size beforehand,
* i.e. #n_components.
*/
virtual void vector_value (const Point<dim> &p,
Vector<double> &values) const;
/**
* Function values at multiple points.
*/
virtual void value_list (const std::vector<Point<dim> > &points,
std::vector<double> &values,
const unsigned int component = 0) const;
/**
* Function gradient at one point.
*/
virtual Tensor<1,dim> gradient (const Point<dim> &p,
const unsigned int component = 0) const;
private:
/**
* The set of exponents.
*/
const Tensor<1,dim> exponents;
};
}
DEAL_II_NAMESPACE_CLOSE
#endif
|