/usr/include/Box2D/Dynamics/b2Body.h is in libbox2d-dev 2.3.1+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 | /*
* Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B2_BODY_H
#define B2_BODY_H
#include <Box2D/Common/b2Math.h>
#include <Box2D/Collision/Shapes/b2Shape.h>
#include <memory>
class b2Fixture;
class b2Joint;
class b2Contact;
class b2Controller;
class b2World;
struct b2FixtureDef;
struct b2JointEdge;
struct b2ContactEdge;
/// The body type.
/// static: zero mass, zero velocity, may be manually moved
/// kinematic: zero mass, non-zero velocity set by user, moved by solver
/// dynamic: positive mass, non-zero velocity determined by forces, moved by solver
enum b2BodyType
{
b2_staticBody = 0,
b2_kinematicBody,
b2_dynamicBody
// TODO_ERIN
//b2_bulletBody,
};
/// A body definition holds all the data needed to construct a rigid body.
/// You can safely re-use body definitions. Shapes are added to a body after construction.
struct b2BodyDef
{
/// This constructor sets the body definition default values.
b2BodyDef()
{
userData = NULL;
position.Set(0.0f, 0.0f);
angle = 0.0f;
linearVelocity.Set(0.0f, 0.0f);
angularVelocity = 0.0f;
linearDamping = 0.0f;
angularDamping = 0.0f;
allowSleep = true;
awake = true;
fixedRotation = false;
bullet = false;
type = b2_staticBody;
active = true;
gravityScale = 1.0f;
}
/// The body type: static, kinematic, or dynamic.
/// Note: if a dynamic body would have zero mass, the mass is set to one.
b2BodyType type;
/// The world position of the body. Avoid creating bodies at the origin
/// since this can lead to many overlapping shapes.
b2Vec2 position;
/// The world angle of the body in radians.
float32 angle;
/// The linear velocity of the body's origin in world co-ordinates.
b2Vec2 linearVelocity;
/// The angular velocity of the body.
float32 angularVelocity;
/// Linear damping is use to reduce the linear velocity. The damping parameter
/// can be larger than 1.0f but the damping effect becomes sensitive to the
/// time step when the damping parameter is large.
float32 linearDamping;
/// Angular damping is use to reduce the angular velocity. The damping parameter
/// can be larger than 1.0f but the damping effect becomes sensitive to the
/// time step when the damping parameter is large.
float32 angularDamping;
/// Set this flag to false if this body should never fall asleep. Note that
/// this increases CPU usage.
bool allowSleep;
/// Is this body initially awake or sleeping?
bool awake;
/// Should this body be prevented from rotating? Useful for characters.
bool fixedRotation;
/// Is this a fast moving body that should be prevented from tunneling through
/// other moving bodies? Note that all bodies are prevented from tunneling through
/// kinematic and static bodies. This setting is only considered on dynamic bodies.
/// @warning You should use this flag sparingly since it increases processing time.
bool bullet;
/// Does this body start out active?
bool active;
/// Use this to store application specific body data.
void* userData;
/// Scale the gravity applied to this body.
float32 gravityScale;
};
/// A rigid body. These are created via b2World::CreateBody.
class b2Body
{
public:
/// Creates a fixture and attach it to this body. Use this function if you need
/// to set some fixture parameters, like friction. Otherwise you can create the
/// fixture directly from a shape.
/// If the density is non-zero, this function automatically updates the mass of the body.
/// Contacts are not created until the next time step.
/// @param def the fixture definition.
/// @warning This function is locked during callbacks.
b2Fixture* CreateFixture(const b2FixtureDef* def);
/// Creates a fixture from a shape and attach it to this body.
/// This is a convenience function. Use b2FixtureDef if you need to set parameters
/// like friction, restitution, user data, or filtering.
/// If the density is non-zero, this function automatically updates the mass of the body.
/// @param shape the shape to be cloned.
/// @param density the shape density (set to zero for static bodies).
/// @warning This function is locked during callbacks.
b2Fixture* CreateFixture(const b2Shape* shape, float32 density);
/// Destroy a fixture. This removes the fixture from the broad-phase and
/// destroys all contacts associated with this fixture. This will
/// automatically adjust the mass of the body if the body is dynamic and the
/// fixture has positive density.
/// All fixtures attached to a body are implicitly destroyed when the body is destroyed.
/// @param fixture the fixture to be removed.
/// @warning This function is locked during callbacks.
void DestroyFixture(b2Fixture* fixture);
/// Set the position of the body's origin and rotation.
/// Manipulating a body's transform may cause non-physical behavior.
/// Note: contacts are updated on the next call to b2World::Step.
/// @param position the world position of the body's local origin.
/// @param angle the world rotation in radians.
void SetTransform(const b2Vec2& position, float32 angle);
/// Get the body transform for the body's origin.
/// @return the world transform of the body's origin.
const b2Transform& GetTransform() const;
/// Get the world body origin position.
/// @return the world position of the body's origin.
const b2Vec2& GetPosition() const;
/// Get the angle in radians.
/// @return the current world rotation angle in radians.
float32 GetAngle() const;
/// Get the world position of the center of mass.
const b2Vec2& GetWorldCenter() const;
/// Get the local position of the center of mass.
const b2Vec2& GetLocalCenter() const;
/// Set the linear velocity of the center of mass.
/// @param v the new linear velocity of the center of mass.
void SetLinearVelocity(const b2Vec2& v);
/// Get the linear velocity of the center of mass.
/// @return the linear velocity of the center of mass.
const b2Vec2& GetLinearVelocity() const;
/// Set the angular velocity.
/// @param omega the new angular velocity in radians/second.
void SetAngularVelocity(float32 omega);
/// Get the angular velocity.
/// @return the angular velocity in radians/second.
float32 GetAngularVelocity() const;
/// Apply a force at a world point. If the force is not
/// applied at the center of mass, it will generate a torque and
/// affect the angular velocity. This wakes up the body.
/// @param force the world force vector, usually in Newtons (N).
/// @param point the world position of the point of application.
/// @param wake also wake up the body
void ApplyForce(const b2Vec2& force, const b2Vec2& point, bool wake);
/// Apply a force to the center of mass. This wakes up the body.
/// @param force the world force vector, usually in Newtons (N).
/// @param wake also wake up the body
void ApplyForceToCenter(const b2Vec2& force, bool wake);
/// Apply a torque. This affects the angular velocity
/// without affecting the linear velocity of the center of mass.
/// This wakes up the body.
/// @param torque about the z-axis (out of the screen), usually in N-m.
/// @param wake also wake up the body
void ApplyTorque(float32 torque, bool wake);
/// Apply an impulse at a point. This immediately modifies the velocity.
/// It also modifies the angular velocity if the point of application
/// is not at the center of mass. This wakes up the body.
/// @param impulse the world impulse vector, usually in N-seconds or kg-m/s.
/// @param point the world position of the point of application.
/// @param wake also wake up the body
void ApplyLinearImpulse(const b2Vec2& impulse, const b2Vec2& point, bool wake);
/// Apply an angular impulse.
/// @param impulse the angular impulse in units of kg*m*m/s
/// @param wake also wake up the body
void ApplyAngularImpulse(float32 impulse, bool wake);
/// Get the total mass of the body.
/// @return the mass, usually in kilograms (kg).
float32 GetMass() const;
/// Get the rotational inertia of the body about the local origin.
/// @return the rotational inertia, usually in kg-m^2.
float32 GetInertia() const;
/// Get the mass data of the body.
/// @return a struct containing the mass, inertia and center of the body.
void GetMassData(b2MassData* data) const;
/// Set the mass properties to override the mass properties of the fixtures.
/// Note that this changes the center of mass position.
/// Note that creating or destroying fixtures can also alter the mass.
/// This function has no effect if the body isn't dynamic.
/// @param massData the mass properties.
void SetMassData(const b2MassData* data);
/// This resets the mass properties to the sum of the mass properties of the fixtures.
/// This normally does not need to be called unless you called SetMassData to override
/// the mass and you later want to reset the mass.
void ResetMassData();
/// Get the world coordinates of a point given the local coordinates.
/// @param localPoint a point on the body measured relative the the body's origin.
/// @return the same point expressed in world coordinates.
b2Vec2 GetWorldPoint(const b2Vec2& localPoint) const;
/// Get the world coordinates of a vector given the local coordinates.
/// @param localVector a vector fixed in the body.
/// @return the same vector expressed in world coordinates.
b2Vec2 GetWorldVector(const b2Vec2& localVector) const;
/// Gets a local point relative to the body's origin given a world point.
/// @param a point in world coordinates.
/// @return the corresponding local point relative to the body's origin.
b2Vec2 GetLocalPoint(const b2Vec2& worldPoint) const;
/// Gets a local vector given a world vector.
/// @param a vector in world coordinates.
/// @return the corresponding local vector.
b2Vec2 GetLocalVector(const b2Vec2& worldVector) const;
/// Get the world linear velocity of a world point attached to this body.
/// @param a point in world coordinates.
/// @return the world velocity of a point.
b2Vec2 GetLinearVelocityFromWorldPoint(const b2Vec2& worldPoint) const;
/// Get the world velocity of a local point.
/// @param a point in local coordinates.
/// @return the world velocity of a point.
b2Vec2 GetLinearVelocityFromLocalPoint(const b2Vec2& localPoint) const;
/// Get the linear damping of the body.
float32 GetLinearDamping() const;
/// Set the linear damping of the body.
void SetLinearDamping(float32 linearDamping);
/// Get the angular damping of the body.
float32 GetAngularDamping() const;
/// Set the angular damping of the body.
void SetAngularDamping(float32 angularDamping);
/// Get the gravity scale of the body.
float32 GetGravityScale() const;
/// Set the gravity scale of the body.
void SetGravityScale(float32 scale);
/// Set the type of this body. This may alter the mass and velocity.
void SetType(b2BodyType type);
/// Get the type of this body.
b2BodyType GetType() const;
/// Should this body be treated like a bullet for continuous collision detection?
void SetBullet(bool flag);
/// Is this body treated like a bullet for continuous collision detection?
bool IsBullet() const;
/// You can disable sleeping on this body. If you disable sleeping, the
/// body will be woken.
void SetSleepingAllowed(bool flag);
/// Is this body allowed to sleep
bool IsSleepingAllowed() const;
/// Set the sleep state of the body. A sleeping body has very
/// low CPU cost.
/// @param flag set to true to wake the body, false to put it to sleep.
void SetAwake(bool flag);
/// Get the sleeping state of this body.
/// @return true if the body is awake.
bool IsAwake() const;
/// Set the active state of the body. An inactive body is not
/// simulated and cannot be collided with or woken up.
/// If you pass a flag of true, all fixtures will be added to the
/// broad-phase.
/// If you pass a flag of false, all fixtures will be removed from
/// the broad-phase and all contacts will be destroyed.
/// Fixtures and joints are otherwise unaffected. You may continue
/// to create/destroy fixtures and joints on inactive bodies.
/// Fixtures on an inactive body are implicitly inactive and will
/// not participate in collisions, ray-casts, or queries.
/// Joints connected to an inactive body are implicitly inactive.
/// An inactive body is still owned by a b2World object and remains
/// in the body list.
void SetActive(bool flag);
/// Get the active state of the body.
bool IsActive() const;
/// Set this body to have fixed rotation. This causes the mass
/// to be reset.
void SetFixedRotation(bool flag);
/// Does this body have fixed rotation?
bool IsFixedRotation() const;
/// Get the list of all fixtures attached to this body.
b2Fixture* GetFixtureList();
const b2Fixture* GetFixtureList() const;
/// Get the list of all joints attached to this body.
b2JointEdge* GetJointList();
const b2JointEdge* GetJointList() const;
/// Get the list of all contacts attached to this body.
/// @warning this list changes during the time step and you may
/// miss some collisions if you don't use b2ContactListener.
b2ContactEdge* GetContactList();
const b2ContactEdge* GetContactList() const;
/// Get the next body in the world's body list.
b2Body* GetNext();
const b2Body* GetNext() const;
/// Get the user data pointer that was provided in the body definition.
void* GetUserData() const;
/// Set the user data. Use this to store your application specific data.
void SetUserData(void* data);
/// Get the parent world of this body.
b2World* GetWorld();
const b2World* GetWorld() const;
/// Dump this body to a log file
void Dump();
private:
friend class b2World;
friend class b2Island;
friend class b2ContactManager;
friend class b2ContactSolver;
friend class b2Contact;
friend class b2DistanceJoint;
friend class b2FrictionJoint;
friend class b2GearJoint;
friend class b2MotorJoint;
friend class b2MouseJoint;
friend class b2PrismaticJoint;
friend class b2PulleyJoint;
friend class b2RevoluteJoint;
friend class b2RopeJoint;
friend class b2WeldJoint;
friend class b2WheelJoint;
// m_flags
enum
{
e_islandFlag = 0x0001,
e_awakeFlag = 0x0002,
e_autoSleepFlag = 0x0004,
e_bulletFlag = 0x0008,
e_fixedRotationFlag = 0x0010,
e_activeFlag = 0x0020,
e_toiFlag = 0x0040
};
b2Body(const b2BodyDef* bd, b2World* world);
~b2Body();
void SynchronizeFixtures();
void SynchronizeTransform();
// This is used to prevent connected bodies from colliding.
// It may lie, depending on the collideConnected flag.
bool ShouldCollide(const b2Body* other) const;
void Advance(float32 t);
b2BodyType m_type;
uint16 m_flags;
int32 m_islandIndex;
b2Transform m_xf; // the body origin transform
b2Sweep m_sweep; // the swept motion for CCD
b2Vec2 m_linearVelocity;
float32 m_angularVelocity;
b2Vec2 m_force;
float32 m_torque;
b2World* m_world;
b2Body* m_prev;
b2Body* m_next;
b2Fixture* m_fixtureList;
int32 m_fixtureCount;
b2JointEdge* m_jointList;
b2ContactEdge* m_contactList;
float32 m_mass, m_invMass;
// Rotational inertia about the center of mass.
float32 m_I, m_invI;
float32 m_linearDamping;
float32 m_angularDamping;
float32 m_gravityScale;
float32 m_sleepTime;
void* m_userData;
};
inline b2BodyType b2Body::GetType() const
{
return m_type;
}
inline const b2Transform& b2Body::GetTransform() const
{
return m_xf;
}
inline const b2Vec2& b2Body::GetPosition() const
{
return m_xf.p;
}
inline float32 b2Body::GetAngle() const
{
return m_sweep.a;
}
inline const b2Vec2& b2Body::GetWorldCenter() const
{
return m_sweep.c;
}
inline const b2Vec2& b2Body::GetLocalCenter() const
{
return m_sweep.localCenter;
}
inline void b2Body::SetLinearVelocity(const b2Vec2& v)
{
if (m_type == b2_staticBody)
{
return;
}
if (b2Dot(v,v) > 0.0f)
{
SetAwake(true);
}
m_linearVelocity = v;
}
inline const b2Vec2& b2Body::GetLinearVelocity() const
{
return m_linearVelocity;
}
inline void b2Body::SetAngularVelocity(float32 w)
{
if (m_type == b2_staticBody)
{
return;
}
if (w * w > 0.0f)
{
SetAwake(true);
}
m_angularVelocity = w;
}
inline float32 b2Body::GetAngularVelocity() const
{
return m_angularVelocity;
}
inline float32 b2Body::GetMass() const
{
return m_mass;
}
inline float32 b2Body::GetInertia() const
{
return m_I + m_mass * b2Dot(m_sweep.localCenter, m_sweep.localCenter);
}
inline void b2Body::GetMassData(b2MassData* data) const
{
data->mass = m_mass;
data->I = m_I + m_mass * b2Dot(m_sweep.localCenter, m_sweep.localCenter);
data->center = m_sweep.localCenter;
}
inline b2Vec2 b2Body::GetWorldPoint(const b2Vec2& localPoint) const
{
return b2Mul(m_xf, localPoint);
}
inline b2Vec2 b2Body::GetWorldVector(const b2Vec2& localVector) const
{
return b2Mul(m_xf.q, localVector);
}
inline b2Vec2 b2Body::GetLocalPoint(const b2Vec2& worldPoint) const
{
return b2MulT(m_xf, worldPoint);
}
inline b2Vec2 b2Body::GetLocalVector(const b2Vec2& worldVector) const
{
return b2MulT(m_xf.q, worldVector);
}
inline b2Vec2 b2Body::GetLinearVelocityFromWorldPoint(const b2Vec2& worldPoint) const
{
return m_linearVelocity + b2Cross(m_angularVelocity, worldPoint - m_sweep.c);
}
inline b2Vec2 b2Body::GetLinearVelocityFromLocalPoint(const b2Vec2& localPoint) const
{
return GetLinearVelocityFromWorldPoint(GetWorldPoint(localPoint));
}
inline float32 b2Body::GetLinearDamping() const
{
return m_linearDamping;
}
inline void b2Body::SetLinearDamping(float32 linearDamping)
{
m_linearDamping = linearDamping;
}
inline float32 b2Body::GetAngularDamping() const
{
return m_angularDamping;
}
inline void b2Body::SetAngularDamping(float32 angularDamping)
{
m_angularDamping = angularDamping;
}
inline float32 b2Body::GetGravityScale() const
{
return m_gravityScale;
}
inline void b2Body::SetGravityScale(float32 scale)
{
m_gravityScale = scale;
}
inline void b2Body::SetBullet(bool flag)
{
if (flag)
{
m_flags |= e_bulletFlag;
}
else
{
m_flags &= ~e_bulletFlag;
}
}
inline bool b2Body::IsBullet() const
{
return (m_flags & e_bulletFlag) == e_bulletFlag;
}
inline void b2Body::SetAwake(bool flag)
{
if (flag)
{
if ((m_flags & e_awakeFlag) == 0)
{
m_flags |= e_awakeFlag;
m_sleepTime = 0.0f;
}
}
else
{
m_flags &= ~e_awakeFlag;
m_sleepTime = 0.0f;
m_linearVelocity.SetZero();
m_angularVelocity = 0.0f;
m_force.SetZero();
m_torque = 0.0f;
}
}
inline bool b2Body::IsAwake() const
{
return (m_flags & e_awakeFlag) == e_awakeFlag;
}
inline bool b2Body::IsActive() const
{
return (m_flags & e_activeFlag) == e_activeFlag;
}
inline bool b2Body::IsFixedRotation() const
{
return (m_flags & e_fixedRotationFlag) == e_fixedRotationFlag;
}
inline void b2Body::SetSleepingAllowed(bool flag)
{
if (flag)
{
m_flags |= e_autoSleepFlag;
}
else
{
m_flags &= ~e_autoSleepFlag;
SetAwake(true);
}
}
inline bool b2Body::IsSleepingAllowed() const
{
return (m_flags & e_autoSleepFlag) == e_autoSleepFlag;
}
inline b2Fixture* b2Body::GetFixtureList()
{
return m_fixtureList;
}
inline const b2Fixture* b2Body::GetFixtureList() const
{
return m_fixtureList;
}
inline b2JointEdge* b2Body::GetJointList()
{
return m_jointList;
}
inline const b2JointEdge* b2Body::GetJointList() const
{
return m_jointList;
}
inline b2ContactEdge* b2Body::GetContactList()
{
return m_contactList;
}
inline const b2ContactEdge* b2Body::GetContactList() const
{
return m_contactList;
}
inline b2Body* b2Body::GetNext()
{
return m_next;
}
inline const b2Body* b2Body::GetNext() const
{
return m_next;
}
inline void b2Body::SetUserData(void* data)
{
m_userData = data;
}
inline void* b2Body::GetUserData() const
{
return m_userData;
}
inline void b2Body::ApplyForce(const b2Vec2& force, const b2Vec2& point, bool wake)
{
if (m_type != b2_dynamicBody)
{
return;
}
if (wake && (m_flags & e_awakeFlag) == 0)
{
SetAwake(true);
}
// Don't accumulate a force if the body is sleeping.
if (m_flags & e_awakeFlag)
{
m_force += force;
m_torque += b2Cross(point - m_sweep.c, force);
}
}
inline void b2Body::ApplyForceToCenter(const b2Vec2& force, bool wake)
{
if (m_type != b2_dynamicBody)
{
return;
}
if (wake && (m_flags & e_awakeFlag) == 0)
{
SetAwake(true);
}
// Don't accumulate a force if the body is sleeping
if (m_flags & e_awakeFlag)
{
m_force += force;
}
}
inline void b2Body::ApplyTorque(float32 torque, bool wake)
{
if (m_type != b2_dynamicBody)
{
return;
}
if (wake && (m_flags & e_awakeFlag) == 0)
{
SetAwake(true);
}
// Don't accumulate a force if the body is sleeping
if (m_flags & e_awakeFlag)
{
m_torque += torque;
}
}
inline void b2Body::ApplyLinearImpulse(const b2Vec2& impulse, const b2Vec2& point, bool wake)
{
if (m_type != b2_dynamicBody)
{
return;
}
if (wake && (m_flags & e_awakeFlag) == 0)
{
SetAwake(true);
}
// Don't accumulate velocity if the body is sleeping
if (m_flags & e_awakeFlag)
{
m_linearVelocity += m_invMass * impulse;
m_angularVelocity += m_invI * b2Cross(point - m_sweep.c, impulse);
}
}
inline void b2Body::ApplyAngularImpulse(float32 impulse, bool wake)
{
if (m_type != b2_dynamicBody)
{
return;
}
if (wake && (m_flags & e_awakeFlag) == 0)
{
SetAwake(true);
}
// Don't accumulate velocity if the body is sleeping
if (m_flags & e_awakeFlag)
{
m_angularVelocity += m_invI * impulse;
}
}
inline void b2Body::SynchronizeTransform()
{
m_xf.q.Set(m_sweep.a);
m_xf.p = m_sweep.c - b2Mul(m_xf.q, m_sweep.localCenter);
}
inline void b2Body::Advance(float32 alpha)
{
// Advance to the new safe time. This doesn't sync the broad-phase.
m_sweep.Advance(alpha);
m_sweep.c = m_sweep.c0;
m_sweep.a = m_sweep.a0;
m_xf.q.Set(m_sweep.a);
m_xf.p = m_sweep.c - b2Mul(m_xf.q, m_sweep.localCenter);
}
inline b2World* b2Body::GetWorld()
{
return m_world;
}
inline const b2World* b2Body::GetWorld() const
{
return m_world;
}
#endif
|