/usr/share/pyshared/statsmodels/tsa/tsatools.py is in python-statsmodels 0.4.2-1.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 | import numpy as np
import numpy.lib.recfunctions as nprf
from statsmodels.tools.tools import add_constant
def add_trend(X, trend="c", prepend=False):
"""
Adds a trend and/or constant to an array.
Parameters
----------
X : array-like
Original array of data.
trend : str {"c","t","ct","ctt"}
"c" add constant only
"t" add trend only
"ct" add constant and linear trend
"ctt" add constant and linear and quadratic trend.
prepend : bool
If True, prepends the new data to the columns of X.
Notes
-----
Returns columns as ["ctt","ct","c"] whenever applicable. There is currently
no checking for an existing constant or trend.
See also
--------
statsmodels.add_constant
"""
#TODO: could be generalized for trend of aribitrary order
trend = trend.lower()
if trend == "c": # handles structured arrays
return add_constant(X, prepend=prepend)
elif trend == "ct" or trend == "t":
trendorder = 1
elif trend == "ctt":
trendorder = 2
else:
raise ValueError("trend %s not understood" % trend)
X = np.asanyarray(X)
nobs = len(X)
trendarr = np.vander(np.arange(1,nobs+1, dtype=float), trendorder+1)
# put in order ctt
trendarr = np.fliplr(trendarr)
if trend == "t":
trendarr = trendarr[:,1]
if not X.dtype.names:
if not prepend:
X = np.column_stack((X, trendarr))
else:
X = np.column_stack((trendarr, X))
else:
return_rec = data.__clas__ is np.recarray
if trendorder == 1:
if trend == "ct":
dt = [('const',float),('trend',float)]
else:
dt = [('trend', float)]
elif trendorder == 2:
dt = [('const',float),('trend',float),('trend_squared', float)]
trendarr = trendarr.view(dt)
if prepend:
X = nprf.append_fields(trendarr, X.dtype.names, [X[i] for i
in data.dtype.names], usemask=False, asrecarray=return_rec)
else:
X = nprf.append_fields(X, trendarr.dtype.names, [trendarr[i] for i
in trendarr.dtype.names], usemask=false, asrecarray=return_rec)
return X
def add_lag(x, col=None, lags=1, drop=False, insert=True):
"""
Returns an array with lags included given an array.
Parameters
----------
x : array
An array or NumPy ndarray subclass. Can be either a 1d or 2d array with
observations in columns.
col : 'string', int, or None
If data is a structured array or a recarray, `col` can be a string
that is the name of the column containing the variable. Or `col` can
be an int of the zero-based column index. If it's a 1d array `col`
can be None.
lags : int
The number of lags desired.
drop : bool
Whether to keep the contemporaneous variable for the data.
insert : bool or int
If True, inserts the lagged values after `col`. If False, appends
the data. If int inserts the lags at int.
Returns
-------
array : ndarray
Array with lags
Examples
--------
>>> import statsmodels.api as sm
>>> data = sm.datasets.macrodata.load()
>>> data = data.data[['year','quarter','realgdp','cpi']]
>>> data = sm.tsa.add_lag(data, 'realgdp', lags=2)
Notes
-----
Trims the array both forward and backward, so that the array returned
so that the length of the returned array is len(`X`) - lags. The lags are
returned in increasing order, ie., t-1,t-2,...,t-lags
"""
if x.dtype.names:
names = x.dtype.names
if not col and np.squeeze(x).ndim > 1:
raise IndexError, "col is None and the input array is not 1d"
elif len(names) == 1:
col = names[0]
if isinstance(col, int):
col = x.dtype.names[col]
contemp = x[col]
# make names for lags
tmp_names = [col + '_'+'L(%i)' % i for i in range(1,lags+1)]
ndlags = lagmat(contemp, maxlag=lags, trim='Both')
# get index for return
if insert is True:
ins_idx = list(names).index(col) + 1
elif insert is False:
ins_idx = len(names) + 1
else: # insert is an int
if insert > len(names):
raise Warning("insert > number of variables, inserting at the"+
" last position")
ins_idx = insert
first_names = list(names[:ins_idx])
last_names = list(names[ins_idx:])
if drop:
if col in first_names:
first_names.pop(first_names.index(col))
else:
last_names.pop(last_names.index(col))
if first_names: # only do this if x isn't "empty"
first_arr = nprf.append_fields(x[first_names][lags:],tmp_names,
ndlags.T, usemask=False)
else:
first_arr = np.zeros(len(x)-lags, dtype=zip(tmp_names,
(x[col].dtype,)*lags))
for i,name in enumerate(tmp_names):
first_arr[name] = ndlags[:,i]
if last_names:
return nprf.append_fields(first_arr, last_names,
[x[name][lags:] for name in last_names], usemask=False)
else: # lags for last variable
return first_arr
else: # we have an ndarray
if x.ndim == 1: # make 2d if 1d
x = x[:,None]
if col is None:
col = 0
# handle negative index
if col < 0:
col = x.shape[1] + col
contemp = x[:,col]
if insert is True:
ins_idx = col + 1
elif insert is False:
ins_idx = x.shape[1]
else:
if insert < 0: # handle negative index
insert = x.shape[1] + insert + 1
if insert > x.shape[1]:
insert = x.shape[1]
raise Warning("insert > number of variables, inserting at the"+
" last position")
ins_idx = insert
ndlags = lagmat(contemp, lags, trim='Both')
first_cols = range(ins_idx)
last_cols = range(ins_idx,x.shape[1])
if drop:
if col in first_cols:
first_cols.pop(first_cols.index(col))
else:
last_cols.pop(last_cols.index(col))
return np.column_stack((x[lags:,first_cols],ndlags,
x[lags:,last_cols]))
def detrend(x, order=1, axis=0):
'''detrend an array with a trend of given order along axis 0 or 1
Parameters
----------
x : array_like, 1d or 2d
data, if 2d, then each row or column is independently detrended with the
same trendorder, but independent trend estimates
order : int
specifies the polynomial order of the trend, zero is constant, one is
linear trend, two is quadratic trend
axis : int
for detrending with order > 0, axis can be either 0 observations by rows,
or 1, observations by columns
Returns
-------
detrended data series : ndarray
The detrended series is the residual of the linear regression of the
data on the trend of given order.
'''
x = np.asarray(x)
nobs = x.shape[0]
if order == 0:
return x - np.expand_dims(x.mean(ax), x)
else:
if x.ndim == 2 and range(2)[axis]==1:
x = x.T
elif x.ndim > 2:
raise NotImplementedError('x.ndim>2 is not implemented until it is needed')
#could use a polynomial, but this should work also with 2d x, but maybe not yet
trends = np.vander(np.arange(nobs).astype(float), N=order+1)
beta = np.linalg.lstsq(trends, x)[0]
resid = x - np.dot(trends, beta)
if x.ndim == 2 and range(2)[axis]==1:
resid = resid.T
return resid
def lagmat(x, maxlag, trim='forward', original='ex'):
'''create 2d array of lags
Parameters
----------
x : array_like, 1d or 2d
data; if 2d, observation in rows and variables in columns
maxlag : int or sequence of ints
all lags from zero to maxlag are included
trim : str {'forward', 'backward', 'both', 'none'} or None
* 'forward' : trim invalid observations in front
* 'backward' : trim invalid initial observations
* 'both' : trim invalid observations on both sides
* 'none', None : no trimming of observations
original : str {'ex','sep','in'}
* 'ex' : drops the original array returning only the lagged values.
* 'in' : returns the original array and the lagged values as a single
array.
* 'sep' : returns a tuple (original array, lagged values). The original
array is truncated to have the same number of rows as
the returned lagmat.
Returns
-------
lagmat : 2d array
array with lagged observations
y : 2d array, optional
Only returned if original == 'sep'
Examples
--------
>>> from statsmodels.tsa.tsatools import lagmat
>>> import numpy as np
>>> X = np.arange(1,7).reshape(-1,2)
>>> lagmat(X, maxlag=2, trim="forward", original='in')
array([[ 1., 2., 0., 0., 0., 0.],
[ 3., 4., 1., 2., 0., 0.],
[ 5., 6., 3., 4., 1., 2.]])
>>> lagmat(X, maxlag=2, trim="backward", original='in')
array([[ 5., 6., 3., 4., 1., 2.],
[ 0., 0., 5., 6., 3., 4.],
[ 0., 0., 0., 0., 5., 6.]])
>>> lagmat(X, maxlag=2, trim="both", original='in')
array([[ 5., 6., 3., 4., 1., 2.]])
>>> lagmat(X, maxlag=2, trim="none", original='in')
array([[ 1., 2., 0., 0., 0., 0.],
[ 3., 4., 1., 2., 0., 0.],
[ 5., 6., 3., 4., 1., 2.],
[ 0., 0., 5., 6., 3., 4.],
[ 0., 0., 0., 0., 5., 6.]])
Notes
-----
TODO:
* allow list of lags additional to maxlag
* create varnames for columns
'''
x = np.asarray(x)
dropidx = 0
if x.ndim == 1:
x = x[:,None]
nobs, nvar = x.shape
if original in ['ex','sep']:
dropidx = nvar
if maxlag >= nobs:
raise ValueError("maxlag should be < nobs")
lm = np.zeros((nobs+maxlag, nvar*(maxlag+1)))
for k in range(0, int(maxlag+1)):
lm[maxlag-k:nobs+maxlag-k, nvar*(maxlag-k):nvar*(maxlag-k+1)] = x
if trim:
trimlower = trim.lower()
else:
trimlower = trim
if trimlower == 'none' or not trimlower:
startobs = 0
stopobs = len(lm)
elif trimlower == 'forward':
startobs = 0
stopobs = nobs+maxlag-k
elif trimlower == 'both':
startobs = maxlag
stopobs = nobs+maxlag-k
elif trimlower == 'backward':
startobs = maxlag
stopobs = len(lm)
else:
raise ValueError('trim option not valid')
if original == 'sep':
return lm[startobs:stopobs,dropidx:], x[startobs:stopobs]
else:
return lm[startobs:stopobs,dropidx:]
def lagmat2ds(x, maxlag0, maxlagex=None, dropex=0, trim='forward'):
'''generate lagmatrix for 2d array, columns arranged by variables
Parameters
----------
x : array_like, 2d
2d data, observation in rows and variables in columns
maxlag0 : int
for first variable all lags from zero to maxlag are included
maxlagex : None or int
max lag for all other variables all lags from zero to maxlag are included
dropex : int (default is 0)
exclude first dropex lags from other variables
for all variables, except the first, lags from dropex to maxlagex are
included
trim : string
* 'forward' : trim invalid observations in front
* 'backward' : trim invalid initial observations
* 'both' : trim invalid observations on both sides
* 'none' : no trimming of observations
Returns
-------
lagmat : 2d array
array with lagged observations, columns ordered by variable
Notes
-----
very inefficient for unequal lags, just done for convenience
'''
if maxlagex is None:
maxlagex = maxlag0
maxlag = max(maxlag0, maxlagex)
nobs, nvar = x.shape
lagsli = [lagmat(x[:,0], maxlag, trim=trim, original='in')[:,:maxlag0+1]]
for k in range(1,nvar):
lagsli.append(lagmat(x[:,k], maxlag, trim=trim, original='in')[:,dropex:maxlagex+1])
return np.column_stack(lagsli)
def vec(mat):
return mat.ravel('F')
def vech(mat):
# Gets Fortran-order
return mat.T.take(_triu_indices(len(mat)))
# tril/triu/diag, suitable for ndarray.take
def _tril_indices(n):
rows, cols = np.tril_indices(n)
return rows * n + cols
def _triu_indices(n):
rows, cols = np.triu_indices(n)
return rows * n + cols
def _diag_indices(n):
rows, cols = np.diag_indices(n)
return rows * n + cols
def unvec(v):
k = int(np.sqrt(len(v)))
assert(k * k == len(v))
return v.reshape((k, k), order='F')
def unvech(v):
# quadratic formula, correct fp error
rows = .5 * (-1 + np.sqrt(1 + 8 * len(v)))
rows = int(np.round(rows))
result = np.zeros((rows, rows))
result[np.triu_indices(rows)] = v
result = result + result.T
# divide diagonal elements by 2
result[np.diag_indices(rows)] /= 2
return result
def duplication_matrix(n):
"""
Create duplication matrix D_n which satisfies vec(S) = D_n vech(S) for
symmetric matrix S
Returns
-------
D_n : ndarray
"""
tmp = np.eye(n * (n + 1) / 2)
return np.array([unvech(x).ravel() for x in tmp]).T
def elimination_matrix(n):
"""
Create the elimination matrix L_n which satisfies vech(M) = L_n vec(M) for
any matrix M
Parameters
----------
Returns
-------
"""
vech_indices = vec(np.tril(np.ones((n, n))))
return np.eye(n * n)[vech_indices != 0]
def commutation_matrix(p, q):
"""
Create the commutation matrix K_{p,q} satisfying vec(A') = K_{p,q} vec(A)
Parameters
----------
p : int
q : int
Returns
-------
K : ndarray (pq x pq)
"""
K = np.eye(p * q)
indices = np.arange(p * q).reshape((p, q), order='F')
return K.take(indices.ravel(), axis=0)
def _ar_transparams(params):
"""
Transforms params to induce stationarity/invertability.
Parameters
----------
params : array
The AR coefficients
Reference
---------
Jones(1980)
"""
newparams = ((1-np.exp(-params))/
(1+np.exp(-params))).copy()
tmp = ((1-np.exp(-params))/
(1+np.exp(-params))).copy()
for j in range(1,len(params)):
a = newparams[j]
for kiter in range(j):
tmp[kiter] -= a * newparams[j-kiter-1]
newparams[:j] = tmp[:j]
return newparams
def _ar_invtransparams(params):
"""
Inverse of the Jones reparameterization
Parameters
----------
params : array
The transformed AR coefficients
"""
# AR coeffs
tmp = params.copy()
for j in range(len(params)-1,0,-1):
a = params[j]
for kiter in range(j):
tmp[kiter] = (params[kiter] + a * params[j-kiter-1])/\
(1-a**2)
params[:j] = tmp[:j]
invarcoefs = -np.log((1-params)/(1+params))
return invarcoefs
def _ma_transparams(params):
"""
Transforms params to induce stationarity/invertability.
Parameters
----------
params : array
The ma coeffecients of an (AR)MA model.
Reference
---------
Jones(1980)
"""
newparams = ((1-np.exp(-params))/(1+np.exp(-params))).copy()
tmp = ((1-np.exp(-params))/(1+np.exp(-params))).copy()
# levinson-durbin to get macf
for j in range(1,len(params)):
b = newparams[j]
for kiter in range(j):
tmp[kiter] += b * newparams[j-kiter-1]
newparams[:j] = tmp[:j]
return newparams
def _ma_invtransparams(macoefs):
"""
Inverse of the Jones reparameterization
Parameters
----------
params : array
The transformed MA coefficients
"""
tmp = macoefs.copy()
for j in range(len(macoefs)-1,0,-1):
b = macoefs[j]
for kiter in range(j):
tmp[kiter] = (macoefs[kiter]-b *macoefs[j-kiter-1])/(1-b**2)
macoefs[:j] = tmp[:j]
invmacoefs = -np.log((1-macoefs)/(1+macoefs))
return invmacoefs
__all__ = ['lagmat', 'lagmat2ds','add_trend', 'duplication_matrix',
'elimination_matrix', 'commutation_matrix',
'vec', 'vech', 'unvec', 'unvech']
if __name__ == '__main__':
# sanity check, mainly for imports
x = np.random.normal(size=(100,2))
tmp = lagmat(x,2)
tmp = lagmat2ds(x,2)
# grangercausalitytests(x, 2)
|