This file is indexed.

/usr/share/pyshared/statsmodels/tsa/tsatools.py is in python-statsmodels 0.4.2-1.2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
import numpy as np
import numpy.lib.recfunctions as nprf
from statsmodels.tools.tools import add_constant

def add_trend(X, trend="c", prepend=False):
    """
    Adds a trend and/or constant to an array.

    Parameters
    ----------
    X : array-like
        Original array of data.
    trend : str {"c","t","ct","ctt"}
        "c" add constant only
        "t" add trend only
        "ct" add constant and linear trend
        "ctt" add constant and linear and quadratic trend.
    prepend : bool
        If True, prepends the new data to the columns of X.

    Notes
    -----
    Returns columns as ["ctt","ct","c"] whenever applicable.  There is currently
    no checking for an existing constant or trend.

    See also
    --------
    statsmodels.add_constant
    """
    #TODO: could be generalized for trend of aribitrary order
    trend = trend.lower()
    if trend == "c":    # handles structured arrays
        return add_constant(X, prepend=prepend)
    elif trend == "ct" or trend == "t":
        trendorder = 1
    elif trend == "ctt":
        trendorder = 2
    else:
        raise ValueError("trend %s not understood" % trend)
    X = np.asanyarray(X)
    nobs = len(X)
    trendarr = np.vander(np.arange(1,nobs+1, dtype=float), trendorder+1)
    # put in order ctt
    trendarr = np.fliplr(trendarr)
    if trend == "t":
        trendarr = trendarr[:,1]
    if not X.dtype.names:
        if not prepend:
            X = np.column_stack((X, trendarr))
        else:
            X = np.column_stack((trendarr, X))
    else:
        return_rec = data.__clas__ is np.recarray
        if trendorder == 1:
            if trend == "ct":
                dt = [('const',float),('trend',float)]
            else:
                dt = [('trend', float)]
        elif trendorder == 2:
            dt = [('const',float),('trend',float),('trend_squared', float)]
        trendarr = trendarr.view(dt)
        if prepend:
            X = nprf.append_fields(trendarr, X.dtype.names, [X[i] for i
                in data.dtype.names], usemask=False, asrecarray=return_rec)
        else:
            X = nprf.append_fields(X, trendarr.dtype.names, [trendarr[i] for i
                in trendarr.dtype.names], usemask=false, asrecarray=return_rec)
    return X

def add_lag(x, col=None, lags=1, drop=False, insert=True):
    """
    Returns an array with lags included given an array.

    Parameters
    ----------
    x : array
        An array or NumPy ndarray subclass. Can be either a 1d or 2d array with
        observations in columns.
    col : 'string', int, or None
        If data is a structured array or a recarray, `col` can be a string
        that is the name of the column containing the variable. Or `col` can
        be an int of the zero-based column index. If it's a 1d array `col`
        can be None.
    lags : int
        The number of lags desired.
    drop : bool
        Whether to keep the contemporaneous variable for the data.
    insert : bool or int
        If True, inserts the lagged values after `col`. If False, appends
        the data. If int inserts the lags at int.

    Returns
    -------
    array : ndarray
        Array with lags

    Examples
    --------

    >>> import statsmodels.api as sm
    >>> data = sm.datasets.macrodata.load()
    >>> data = data.data[['year','quarter','realgdp','cpi']]
    >>> data = sm.tsa.add_lag(data, 'realgdp', lags=2)

    Notes
    -----
    Trims the array both forward and backward, so that the array returned
    so that the length of the returned array is len(`X`) - lags. The lags are
    returned in increasing order, ie., t-1,t-2,...,t-lags
    """
    if x.dtype.names:
        names = x.dtype.names
        if not col and np.squeeze(x).ndim > 1:
            raise IndexError, "col is None and the input array is not 1d"
        elif len(names) == 1:
            col = names[0]
        if isinstance(col, int):
            col = x.dtype.names[col]
        contemp = x[col]

        # make names for lags
        tmp_names = [col + '_'+'L(%i)' % i for i in range(1,lags+1)]
        ndlags = lagmat(contemp, maxlag=lags, trim='Both')

        # get index for return
        if insert is True:
            ins_idx = list(names).index(col) + 1
        elif insert is False:
            ins_idx = len(names) + 1
        else: # insert is an int
            if insert > len(names):
                raise Warning("insert > number of variables, inserting at the"+
                              " last position")
            ins_idx = insert

        first_names = list(names[:ins_idx])
        last_names = list(names[ins_idx:])

        if drop:
            if col in first_names:
                first_names.pop(first_names.index(col))
            else:
                last_names.pop(last_names.index(col))

        if first_names: # only do this if x isn't "empty"
            first_arr = nprf.append_fields(x[first_names][lags:],tmp_names,
                        ndlags.T, usemask=False)
        else:
            first_arr = np.zeros(len(x)-lags, dtype=zip(tmp_names,
                (x[col].dtype,)*lags))
            for i,name in enumerate(tmp_names):
                first_arr[name] = ndlags[:,i]
        if last_names:
            return nprf.append_fields(first_arr, last_names,
                    [x[name][lags:] for name in last_names], usemask=False)
        else: # lags for last variable
            return first_arr

    else: # we have an ndarray

        if x.ndim == 1: # make 2d if 1d
            x = x[:,None]
        if col is None:
            col = 0

        # handle negative index
        if col < 0:
            col = x.shape[1] + col

        contemp = x[:,col]

        if insert is True:
            ins_idx = col + 1
        elif insert is False:
            ins_idx = x.shape[1]
        else:
            if insert < 0: # handle negative index
                insert = x.shape[1] + insert + 1
            if insert > x.shape[1]:
                insert = x.shape[1]
                raise Warning("insert > number of variables, inserting at the"+
                              " last position")
            ins_idx = insert

        ndlags = lagmat(contemp, lags, trim='Both')
        first_cols = range(ins_idx)
        last_cols = range(ins_idx,x.shape[1])
        if drop:
            if col in first_cols:
                first_cols.pop(first_cols.index(col))
            else:
                last_cols.pop(last_cols.index(col))
        return np.column_stack((x[lags:,first_cols],ndlags,
                    x[lags:,last_cols]))

def detrend(x, order=1, axis=0):
    '''detrend an array with a trend of given order along axis 0 or 1

    Parameters
    ----------
    x : array_like, 1d or 2d
        data, if 2d, then each row or column is independently detrended with the
        same trendorder, but independent trend estimates
    order : int
        specifies the polynomial order of the trend, zero is constant, one is
        linear trend, two is quadratic trend
    axis : int
        for detrending with order > 0, axis can be either 0 observations by rows,
        or 1, observations by columns

    Returns
    -------
    detrended data series : ndarray
        The detrended series is the residual of the linear regression of the
        data on the trend of given order.


    '''
    x = np.asarray(x)
    nobs = x.shape[0]
    if order == 0:
        return x - np.expand_dims(x.mean(ax), x)
    else:
        if x.ndim == 2 and range(2)[axis]==1:
            x = x.T
        elif x.ndim > 2:
            raise NotImplementedError('x.ndim>2 is not implemented until it is needed')
        #could use a polynomial, but this should work also with 2d x, but maybe not yet
        trends = np.vander(np.arange(nobs).astype(float), N=order+1)
        beta = np.linalg.lstsq(trends, x)[0]
        resid = x - np.dot(trends, beta)
        if x.ndim == 2 and range(2)[axis]==1:
            resid = resid.T
        return resid


def lagmat(x, maxlag, trim='forward', original='ex'):
    '''create 2d array of lags

    Parameters
    ----------
    x : array_like, 1d or 2d
        data; if 2d, observation in rows and variables in columns
    maxlag : int or sequence of ints
        all lags from zero to maxlag are included
    trim : str {'forward', 'backward', 'both', 'none'} or None
        * 'forward' : trim invalid observations in front
        * 'backward' : trim invalid initial observations
        * 'both' : trim invalid observations on both sides
        * 'none', None : no trimming of observations
    original : str {'ex','sep','in'}
        * 'ex' : drops the original array returning only the lagged values.
        * 'in' : returns the original array and the lagged values as a single
          array.
        * 'sep' : returns a tuple (original array, lagged values). The original
                  array is truncated to have the same number of rows as
                  the returned lagmat.

    Returns
    -------
    lagmat : 2d array
        array with lagged observations
    y : 2d array, optional
        Only returned if original == 'sep'

    Examples
    --------
    >>> from statsmodels.tsa.tsatools import lagmat
    >>> import numpy as np
    >>> X = np.arange(1,7).reshape(-1,2)
    >>> lagmat(X, maxlag=2, trim="forward", original='in')
    array([[ 1.,  2.,  0.,  0.,  0.,  0.],
       [ 3.,  4.,  1.,  2.,  0.,  0.],
       [ 5.,  6.,  3.,  4.,  1.,  2.]])

    >>> lagmat(X, maxlag=2, trim="backward", original='in')
    array([[ 5.,  6.,  3.,  4.,  1.,  2.],
       [ 0.,  0.,  5.,  6.,  3.,  4.],
       [ 0.,  0.,  0.,  0.,  5.,  6.]])

    >>> lagmat(X, maxlag=2, trim="both", original='in')
    array([[ 5.,  6.,  3.,  4.,  1.,  2.]])

    >>> lagmat(X, maxlag=2, trim="none", original='in')
    array([[ 1.,  2.,  0.,  0.,  0.,  0.],
       [ 3.,  4.,  1.,  2.,  0.,  0.],
       [ 5.,  6.,  3.,  4.,  1.,  2.],
       [ 0.,  0.,  5.,  6.,  3.,  4.],
       [ 0.,  0.,  0.,  0.,  5.,  6.]])

    Notes
    -----
    TODO:
    * allow list of lags additional to maxlag
    * create varnames for columns
    '''
    x = np.asarray(x)
    dropidx = 0
    if x.ndim == 1:
        x = x[:,None]
    nobs, nvar = x.shape
    if original in ['ex','sep']:
        dropidx = nvar
    if maxlag >= nobs:
        raise ValueError("maxlag should be < nobs")
    lm = np.zeros((nobs+maxlag, nvar*(maxlag+1)))
    for k in range(0, int(maxlag+1)):
        lm[maxlag-k:nobs+maxlag-k, nvar*(maxlag-k):nvar*(maxlag-k+1)] = x
    if trim:
        trimlower = trim.lower()
    else:
        trimlower = trim
    if trimlower == 'none' or not trimlower:
        startobs = 0
        stopobs = len(lm)
    elif trimlower == 'forward':
        startobs = 0
        stopobs = nobs+maxlag-k
    elif trimlower == 'both':
        startobs = maxlag
        stopobs = nobs+maxlag-k
    elif trimlower == 'backward':
        startobs = maxlag
        stopobs = len(lm)

    else:
        raise ValueError('trim option not valid')
    if original == 'sep':
        return lm[startobs:stopobs,dropidx:], x[startobs:stopobs]
    else:
        return lm[startobs:stopobs,dropidx:]

def lagmat2ds(x, maxlag0, maxlagex=None, dropex=0, trim='forward'):
    '''generate lagmatrix for 2d array, columns arranged by variables

    Parameters
    ----------
    x : array_like, 2d
        2d data, observation in rows and variables in columns
    maxlag0 : int
        for first variable all lags from zero to maxlag are included
    maxlagex : None or int
        max lag for all other variables all lags from zero to maxlag are included
    dropex : int (default is 0)
        exclude first dropex lags from other variables
        for all variables, except the first, lags from dropex to maxlagex are
        included
    trim : string
        * 'forward' : trim invalid observations in front
        * 'backward' : trim invalid initial observations
        * 'both' : trim invalid observations on both sides
        * 'none' : no trimming of observations

    Returns
    -------
    lagmat : 2d array
        array with lagged observations, columns ordered by variable

    Notes
    -----
    very inefficient for unequal lags, just done for convenience
    '''
    if maxlagex is None:
        maxlagex = maxlag0
    maxlag = max(maxlag0, maxlagex)
    nobs, nvar = x.shape
    lagsli = [lagmat(x[:,0], maxlag, trim=trim, original='in')[:,:maxlag0+1]]
    for k in range(1,nvar):
        lagsli.append(lagmat(x[:,k], maxlag, trim=trim, original='in')[:,dropex:maxlagex+1])
    return np.column_stack(lagsli)

def vec(mat):
    return mat.ravel('F')

def vech(mat):
    # Gets Fortran-order
    return mat.T.take(_triu_indices(len(mat)))

# tril/triu/diag, suitable for ndarray.take

def _tril_indices(n):
    rows, cols = np.tril_indices(n)
    return rows * n + cols

def _triu_indices(n):
    rows, cols = np.triu_indices(n)
    return rows * n + cols

def _diag_indices(n):
    rows, cols = np.diag_indices(n)
    return rows * n + cols

def unvec(v):
    k = int(np.sqrt(len(v)))
    assert(k * k == len(v))
    return v.reshape((k, k), order='F')

def unvech(v):
    # quadratic formula, correct fp error
    rows = .5 * (-1 + np.sqrt(1 + 8 * len(v)))
    rows = int(np.round(rows))

    result = np.zeros((rows, rows))
    result[np.triu_indices(rows)] = v
    result = result + result.T

    # divide diagonal elements by 2
    result[np.diag_indices(rows)] /= 2

    return result

def duplication_matrix(n):
    """
    Create duplication matrix D_n which satisfies vec(S) = D_n vech(S) for
    symmetric matrix S

    Returns
    -------
    D_n : ndarray
    """
    tmp = np.eye(n * (n + 1) / 2)
    return np.array([unvech(x).ravel() for x in tmp]).T

def elimination_matrix(n):
    """
    Create the elimination matrix L_n which satisfies vech(M) = L_n vec(M) for
    any matrix M

    Parameters
    ----------

    Returns
    -------

    """
    vech_indices = vec(np.tril(np.ones((n, n))))
    return np.eye(n * n)[vech_indices != 0]

def commutation_matrix(p, q):
    """
    Create the commutation matrix K_{p,q} satisfying vec(A') = K_{p,q} vec(A)

    Parameters
    ----------
    p : int
    q : int

    Returns
    -------
    K : ndarray (pq x pq)
    """
    K = np.eye(p * q)
    indices = np.arange(p * q).reshape((p, q), order='F')
    return K.take(indices.ravel(), axis=0)

def _ar_transparams(params):
    """
    Transforms params to induce stationarity/invertability.

    Parameters
    ----------
    params : array
        The AR coefficients

    Reference
    ---------
    Jones(1980)
    """
    newparams = ((1-np.exp(-params))/
                (1+np.exp(-params))).copy()
    tmp = ((1-np.exp(-params))/
               (1+np.exp(-params))).copy()
    for j in range(1,len(params)):
        a = newparams[j]
        for kiter in range(j):
            tmp[kiter] -= a * newparams[j-kiter-1]
        newparams[:j] = tmp[:j]
    return newparams

def _ar_invtransparams(params):
    """
    Inverse of the Jones reparameterization

    Parameters
    ----------
    params : array
        The transformed AR coefficients
    """
    # AR coeffs
    tmp = params.copy()
    for j in range(len(params)-1,0,-1):
        a = params[j]
        for kiter in range(j):
            tmp[kiter] = (params[kiter] + a * params[j-kiter-1])/\
                    (1-a**2)
        params[:j] = tmp[:j]
    invarcoefs = -np.log((1-params)/(1+params))
    return invarcoefs

def _ma_transparams(params):
    """
    Transforms params to induce stationarity/invertability.

    Parameters
    ----------
    params : array
        The ma coeffecients of an (AR)MA model.

    Reference
    ---------
    Jones(1980)
    """
    newparams = ((1-np.exp(-params))/(1+np.exp(-params))).copy()
    tmp = ((1-np.exp(-params))/(1+np.exp(-params))).copy()

    # levinson-durbin to get macf
    for j in range(1,len(params)):
        b = newparams[j]
        for kiter in range(j):
            tmp[kiter] += b * newparams[j-kiter-1]
        newparams[:j] = tmp[:j]
    return newparams

def _ma_invtransparams(macoefs):
    """
    Inverse of the Jones reparameterization

    Parameters
    ----------
    params : array
        The transformed MA coefficients
    """
    tmp = macoefs.copy()
    for j in range(len(macoefs)-1,0,-1):
        b = macoefs[j]
        for kiter in range(j):
            tmp[kiter] = (macoefs[kiter]-b *macoefs[j-kiter-1])/(1-b**2)
        macoefs[:j] = tmp[:j]
    invmacoefs = -np.log((1-macoefs)/(1+macoefs))
    return invmacoefs


__all__ = ['lagmat', 'lagmat2ds','add_trend', 'duplication_matrix',
           'elimination_matrix', 'commutation_matrix',
           'vec', 'vech', 'unvec', 'unvech']

if __name__ == '__main__':
    # sanity check, mainly for imports
    x = np.random.normal(size=(100,2))
    tmp = lagmat(x,2)
    tmp = lagmat2ds(x,2)
#    grangercausalitytests(x, 2)