/usr/share/pyshared/statsmodels/stats/tabledist.py is in python-statsmodels 0.4.2-1.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 | # -*- coding: utf-8 -*-
"""
Created on Sat Oct 01 20:20:16 2011
Author: Josef Perktold
License: BSD-3
TODO:
check orientation, size and alpha should be increasing for interp1d,
but what is alpha? can be either sf or cdf probability
change it to use one consistent notation
check: instead of bound checking I could use the fill-value of the interpolators
"""
import numpy as np
from scipy.interpolate import interp1d, interp2d, Rbf
from statsmodels.tools.decorators import cache_readonly
class TableDist(object):
'''Distribution, critical values and p-values from tables
currently only 1 extra parameter, e.g. sample size
Parameters
----------
alpha : array_like, 1d
probabiliy in the table, could be either sf (right tail) or cdf (left
tail)
size : array_like, 1d
second paramater in the table
crit_table : array_like, 2d
array with critical values for sample size in rows and probability in
columns
Notes
-----
size and alpha should be increasing
'''
def __init__(self, alpha, size, crit_table):
self.alpha = np.asarray(alpha)
self.size = np.asarray(size)
self.crit_table = np.asarray(crit_table)
self.n_alpha = len(alpha)
self.signcrit = np.sign(np.diff(self.crit_table, 1).mean())
if self.signcrit > 0: #increasing
self.critv_bounds = self.crit_table[:,[0,1]]
else:
self.critv_bounds = self.crit_table[:,[1,0]]
@cache_readonly
def polyn(self):
polyn = [interp1d(self.size, self.crit_table[:,i])
for i in range(self.n_alpha)]
return polyn
@cache_readonly
def poly2d(self):
#check for monotonicity ?
#fix this, interp needs increasing
poly2d = interp2d(self.size, self.alpha, self.crit_table)
return poly2d
@cache_readonly
def polyrbf(self):
xs, xa = np.meshgrid(self.size.astype(float), self.alpha)
polyrbf = Rbf(xs.ravel(), xa.ravel(), self.crit_table.T.ravel(),function='linear')
return polyrbf
def _critvals(self, n):
'''rows of the table, linearly interpolated for given sample size
Parameter
---------
n : float
sample size, second parameter of the table
Returns
-------
critv : ndarray, 1d
critical values (ppf) corresponding to a row of the table
Notes
-----
This is used in two step interpolation, or if we want to know the
critical values for all alphas for any sample size that we can obtain
through interpolation
'''
return np.array([p(n) for p in self.polyn])
def prob(self, x, n):
'''find pvalues by interpolation, eiter cdf(x) or sf(x)
returns extrem probabilities, 0.001 and 0.2, for out of range
Parameters
----------
x : array_like
observed value, assumed to follow the distribution in the table
n : float
sample size, second parameter of the table
Returns
-------
prob : arraylike
This is the probability for each value of x, the p-value in
underlying distribution is for a statistical test.
'''
critv = self._critvals(n)
alpha = self.alpha
# if self.signcrit == 1:
# if x < critv[0]: #generalize: ? np.sign(x - critvals[0]) == self.signcrit:
# return alpha[0]
# elif x > critv[-1]:
# return alpha[-1]
# elif self.signcrit == -1:
# if x > critv[0]:
# return alpha[0]
# elif x < critv[-1]:
# return alpha[-1]
if self.signcrit < 1:
#reverse if critv is decreasing
critv, alpha = critv[::-1], alpha[::-1]
#now critv is increasing
if np.size(x) == 1:
if x < critv[0]:
return alpha[0]
elif x > critv[-1]:
return alpha[-1]
return interp1d(critv, alpha)(x)[()]
else:
#vectorized
cond_low = (x < critv[0])
cond_high = (x > critv[-1])
cond_interior = ~np.logical_or(cond_low, cond_high)
probs = np.nan * np.ones(x.shape) #mistake if nan left
probs[cond_low] = alpha[0]
probs[cond_low] = alpha[-1]
probs[cond_interior] = interp1d(critv, alpha)(x[cond_interior])
return probs
def crit2(self, prob, n):
'''returns interpolated quantiles, similar to ppf or isf
this can be either cdf or sf depending on the table, twosided?
this doesn't work, no more knots warning
'''
return self.poly2d(n, prob)
def crit(self, prob, n):
'''returns interpolated quantiles, similar to ppf or isf
use two sequential 1d interpolation, first by n then by prob
Parameter
---------
prob : array_like
probabilities corresponding to the definition of table columns
n : int or float
sample size, second parameter of the table
Returns
-------
ppf : array_like
critical values with same shape as prob
'''
prob = np.asarray(prob)
alpha = self.alpha
critv = self._critvals(n)
#vectorized
cond_ilow = (prob > alpha[0])
cond_ihigh = (prob < alpha[-1])
cond_interior = np.logical_or(cond_ilow, cond_ihigh)
#scalar
if prob.size == 1:
if cond_interior:
return interp1d(alpha, critv)(prob)
else:
return np.nan
#vectorized
quantile = np.nan * np.ones(prob.shape) #nans for outside
quantile[cond_interior] = interp1d(alpha, critv)(prob[cond_interior])
return quantile
def crit3(self, prob, n):
'''returns interpolated quantiles, similar to ppf or isf
uses Rbf to interpolate critical values as function of `prob` and `n`
Parameter
---------
prob : array_like
probabilities corresponding to the definition of table columns
n : int or float
sample size, second parameter of the table
Returns
-------
ppf : array_like
critical values with same shape as prob, returns nan for arguments
that are outside of the table bounds
'''
prob = np.asarray(prob)
alpha = self.alpha
#vectorized
cond_ilow = (prob > alpha[0])
cond_ihigh = (prob < alpha[-1])
cond_interior = np.logical_or(cond_ilow, cond_ihigh)
#scalar
if prob.size == 1:
if cond_interior:
return self.polyrbf(n, prob)
else:
return np.nan
#vectorized
quantile = np.nan * np.ones(prob.shape) #nans for outside
quantile[cond_interior] = self.polyrbf(n, prob[cond_interior])
return quantile
if __name__ == '__main__':
'''
example Lilliefors test for normality
An Analytic Approximation to the Distribution of Lilliefors's Test Statistic for Normality
Author(s): Gerard E. Dallal and Leland WilkinsonSource: The American Statistician, Vol. 40, No. 4 (Nov., 1986), pp. 294-296Published by: American Statistical AssociationStable URL: http://www.jstor.org/stable/2684607 .
'''
#for this test alpha is sf probability, i.e. right tail probability
alpha = np.array([ 0.2 , 0.15 , 0.1 , 0.05 , 0.01 , 0.001])[::-1]
size = np.array([ 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 25, 30, 40, 100, 400, 900], float)
#critical values, rows are by sample size, columns are by alpha
crit_lf = np.array( [[303, 321, 346, 376, 413, 433],
[289, 303, 319, 343, 397, 439],
[269, 281, 297, 323, 371, 424],
[252, 264, 280, 304, 351, 402],
[239, 250, 265, 288, 333, 384],
[227, 238, 252, 274, 317, 365],
[217, 228, 241, 262, 304, 352],
[208, 218, 231, 251, 291, 338],
[200, 210, 222, 242, 281, 325],
[193, 202, 215, 234, 271, 314],
[187, 196, 208, 226, 262, 305],
[181, 190, 201, 219, 254, 296],
[176, 184, 195, 213, 247, 287],
[171, 179, 190, 207, 240, 279],
[167, 175, 185, 202, 234, 273],
[163, 170, 181, 197, 228, 266],
[159, 166, 176, 192, 223, 260],
[143, 150, 159, 173, 201, 236],
[131, 138, 146, 159, 185, 217],
[115, 120, 128, 139, 162, 189],
[ 74, 77, 82, 89, 104, 122],
[ 37, 39, 41, 45, 52, 61],
[ 25, 26, 28, 30, 35, 42]])[:,::-1] / 1000.
lf = TableDist(alpha, size, crit_lf)
print lf.prob(0.166, 20), 'should be:', 0.15
print
print lf.crit2(0.15, 20), 'should be:', 0.166, 'interp2d bad'
print lf.crit(0.15, 20), 'should be:', 0.166, 'two 1d'
print lf.crit3(0.15, 20), 'should be:', 0.166, 'Rbf'
print
print lf.crit2(0.17, 20), 'should be in:', (.159, .166), 'interp2d bad'
print lf.crit(0.17, 20), 'should be in:', (.159, .166), 'two 1d'
print lf.crit3(0.17, 20), 'should be in:', (.159, .166), 'Rbf'
print
print lf.crit2(0.19, 20), 'should be in:', (.159, .166), 'interp2d bad'
print lf.crit(0.19, 20), 'should be in:', (.159, .166), 'two 1d'
print lf.crit3(0.19, 20), 'should be in:', (.159, .166), 'Rbf'
print
print lf.crit2(0.199, 20), 'should be in:', (.159, .166), 'interp2d bad'
print lf.crit(0.199, 20), 'should be in:', (.159, .166), 'two 1d'
print lf.crit3(0.199, 20), 'should be in:', (.159, .166), 'Rbf'
#testing
print np.max(np.abs(np.array([lf.prob(c, size[i]) for i in range(len(size)) for c in crit_lf[i]]).reshape(-1,lf.n_alpha) - lf.alpha))
#1.6653345369377348e-16
print np.max(np.abs(np.array([lf.crit(c, size[i]) for i in range(len(size)) for c in lf.alpha]).reshape(-1,lf.n_alpha) - crit_lf))
#6.9388939039072284e-18
print np.max(np.abs(np.array([lf.crit3(c, size[i]) for i in range(len(size)) for c in lf.alpha]).reshape(-1,lf.n_alpha) - crit_lf))
#4.0615705243496336e-12
print (np.array([lf.crit3(c, size[i]) for i in range(len(size)) for c in lf.alpha[:-1]*1.1]).reshape(-1,lf.n_alpha-1) < crit_lf[:,:-1]).all()
print (np.array([lf.crit3(c, size[i]) for i in range(len(size)) for c in lf.alpha[:-1]*1.1]).reshape(-1,lf.n_alpha-1) > crit_lf[:,1:]).all()
print (np.array([lf.prob(c*0.9, size[i]) for i in range(len(size)) for c in crit_lf[i,:-1]]).reshape(-1,lf.n_alpha-1) > lf.alpha[:-1]).all()
print (np.array([lf.prob(c*1.1, size[i]) for i in range(len(size)) for c in crit_lf[i,1:]]).reshape(-1,lf.n_alpha-1) < lf.alpha[1:]).all()
#start at size_idx=2 because of non-monotonicity of lf_crit
print (np.array([lf.prob(c, size[i]*0.9) for i in range(2,len(size)) for c in crit_lf[i,:-1]]).reshape(-1,lf.n_alpha-1) > lf.alpha[:-1]).all()
|