This file is indexed.

/usr/include/viennacl/scheduler/execute.hpp is in libviennacl-dev 1.5.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#ifndef VIENNACL_SCHEDULER_EXECUTE_HPP
#define VIENNACL_SCHEDULER_EXECUTE_HPP

/* =========================================================================
   Copyright (c) 2010-2014, Institute for Microelectronics,
                            Institute for Analysis and Scientific Computing,
                            TU Wien.
   Portions of this software are copyright by UChicago Argonne, LLC.

                            -----------------
                  ViennaCL - The Vienna Computing Library
                            -----------------

   Project Head:    Karl Rupp                   rupp@iue.tuwien.ac.at

   (A list of authors and contributors can be found in the PDF manual)

   License:         MIT (X11), see file LICENSE in the base directory
============================================================================= */


/** @file viennacl/scheduler/execute.hpp
    @brief Provides the datastructures for dealing with a single statement such as 'x = y + z;'
*/

#include "viennacl/forwards.h"
#include "viennacl/scheduler/forwards.h"

#include "viennacl/scheduler/execute_scalar_assign.hpp"
#include "viennacl/scheduler/execute_axbx.hpp"
#include "viennacl/scheduler/execute_elementwise.hpp"
#include "viennacl/scheduler/execute_matrix_prod.hpp"

namespace viennacl
{
  namespace scheduler
  {
    namespace detail
    {
      /** @brief Deals with x = RHS where RHS is an expression and x is either a scalar, a vector, or a matrix */
      void execute_composite(statement const & s, statement_node const & root_node)
      {
        statement::container_type const & expr = s.array();

        statement_node const & leaf = expr[root_node.rhs.node_index];

        if (leaf.op.type  == OPERATION_BINARY_ADD_TYPE || leaf.op.type  == OPERATION_BINARY_SUB_TYPE) // x = (y) +- (z)  where y and z are either data objects or expressions
        {
          execute_axbx(s, root_node);
        }
        else if (leaf.op.type == OPERATION_BINARY_MULT_TYPE || leaf.op.type == OPERATION_BINARY_DIV_TYPE) // x = (y) * / alpha;
        {
          bool scalar_is_temporary = (leaf.rhs.type_family != SCALAR_TYPE_FAMILY);

          statement_node scalar_temp_node;
          if (scalar_is_temporary)
          {
            lhs_rhs_element temp;
            temp.type_family  = SCALAR_TYPE_FAMILY;
            temp.subtype      = DEVICE_SCALAR_TYPE;
            temp.numeric_type = root_node.lhs.numeric_type;
            detail::new_element(scalar_temp_node.lhs, temp);

            scalar_temp_node.op.type_family = OPERATION_BINARY_TYPE_FAMILY;
            scalar_temp_node.op.type        = OPERATION_BINARY_ASSIGN_TYPE;

            scalar_temp_node.rhs.type_family  = COMPOSITE_OPERATION_FAMILY;
            scalar_temp_node.rhs.subtype      = INVALID_SUBTYPE;
            scalar_temp_node.rhs.numeric_type = INVALID_NUMERIC_TYPE;
            scalar_temp_node.rhs.node_index   = leaf.rhs.node_index;

            // work on subexpression:
            // TODO: Catch exception, free temporary, then rethrow
            execute_composite(s, scalar_temp_node);
          }

          if (leaf.lhs.type_family == COMPOSITE_OPERATION_FAMILY)  //(y) is an expression, so introduce a temporary z = (y):
          {
            statement_node new_root_y;

            new_root_y.lhs.type_family  = root_node.lhs.type_family;
            new_root_y.lhs.subtype      = root_node.lhs.subtype;
            new_root_y.lhs.numeric_type = root_node.lhs.numeric_type;
            detail::new_element(new_root_y.lhs, root_node.lhs);

            new_root_y.op.type_family = OPERATION_BINARY_TYPE_FAMILY;
            new_root_y.op.type        = OPERATION_BINARY_ASSIGN_TYPE;

            new_root_y.rhs.type_family  = COMPOSITE_OPERATION_FAMILY;
            new_root_y.rhs.subtype      = INVALID_SUBTYPE;
            new_root_y.rhs.numeric_type = INVALID_NUMERIC_TYPE;
            new_root_y.rhs.node_index   = leaf.lhs.node_index;

            // work on subexpression:
            // TODO: Catch exception, free temporary, then rethrow
            execute_composite(s, new_root_y);

            // now compute x = z * / alpha:
            lhs_rhs_element u = root_node.lhs;
            lhs_rhs_element v = new_root_y.lhs;
            lhs_rhs_element alpha = scalar_is_temporary ? scalar_temp_node.lhs : leaf.rhs;

            bool is_division = (leaf.op.type  == OPERATION_BINARY_DIV_TYPE);
            switch (root_node.op.type)
            {
              case OPERATION_BINARY_ASSIGN_TYPE:
                detail::ax(u,
                           v, alpha, 1, is_division, false);
                break;
              case OPERATION_BINARY_INPLACE_ADD_TYPE:
                detail::axbx(u,
                             u,   1.0, 1, false,       false,
                             v, alpha, 1, is_division, false);
                break;
              case OPERATION_BINARY_INPLACE_SUB_TYPE:
                detail::axbx(u,
                             u,   1.0, 1, false,       false,
                             v, alpha, 1, is_division, true);
                break;
              default:
                throw statement_not_supported_exception("Unsupported binary operator for vector operation in root note (should be =, +=, or -=)");
            }

            detail::delete_element(new_root_y.lhs);
          }
          else if (leaf.lhs.type_family != COMPOSITE_OPERATION_FAMILY)
          {
            lhs_rhs_element u = root_node.lhs;
            lhs_rhs_element v = leaf.lhs;
            lhs_rhs_element alpha = scalar_is_temporary ? scalar_temp_node.lhs : leaf.rhs;

            bool is_division = (leaf.op.type  == OPERATION_BINARY_DIV_TYPE);
            switch (root_node.op.type)
            {
              case OPERATION_BINARY_ASSIGN_TYPE:
                detail::ax(u,
                           v, alpha, 1, is_division, false);
                break;
              case OPERATION_BINARY_INPLACE_ADD_TYPE:
                detail::axbx(u,
                             u,   1.0, 1, false,       false,
                             v, alpha, 1, is_division, false);
                break;
              case OPERATION_BINARY_INPLACE_SUB_TYPE:
                detail::axbx(u,
                             u,   1.0, 1, false,       false,
                             v, alpha, 1, is_division, true);
                break;
              default:
                throw statement_not_supported_exception("Unsupported binary operator for vector operation in root note (should be =, +=, or -=)");
            }
          }
          else
            throw statement_not_supported_exception("Unsupported binary operator for OPERATION_BINARY_MULT_TYPE || OPERATION_BINARY_DIV_TYPE on leaf node.");

          // clean up
          if (scalar_is_temporary)
            detail::delete_element(scalar_temp_node.lhs);
        }
        else if (   leaf.op.type == OPERATION_BINARY_INNER_PROD_TYPE
                 || leaf.op.type == OPERATION_UNARY_NORM_1_TYPE
                 || leaf.op.type == OPERATION_UNARY_NORM_2_TYPE
                 || leaf.op.type == OPERATION_UNARY_NORM_INF_TYPE)
        {
          execute_scalar_assign_composite(s, root_node);
        }
        else if (   (leaf.op.type_family == OPERATION_UNARY_TYPE_FAMILY && leaf.op.type != OPERATION_UNARY_TRANS_TYPE)
                 || leaf.op.type == OPERATION_BINARY_ELEMENT_PROD_TYPE
                 || leaf.op.type == OPERATION_BINARY_ELEMENT_DIV_TYPE) // element-wise operations
        {
          execute_element_composite(s, root_node);
        }
        else if (   leaf.op.type == OPERATION_BINARY_MAT_VEC_PROD_TYPE
                 || leaf.op.type == OPERATION_BINARY_MAT_MAT_PROD_TYPE)
        {
          execute_matrix_prod(s, root_node);
        }
        else if (   leaf.op.type == OPERATION_UNARY_TRANS_TYPE)
        {
          assign_trans(root_node.lhs, leaf.lhs);
        }
        else
          throw statement_not_supported_exception("Unsupported binary operator");
      }


      /** @brief Deals with x = y  for a scalar/vector/matrix x, y */
      inline void execute_single(statement const &, statement_node const & root_node)
      {
        lhs_rhs_element u = root_node.lhs;
        lhs_rhs_element v = root_node.rhs;
        switch (root_node.op.type)
        {
          case OPERATION_BINARY_ASSIGN_TYPE:
            detail::ax(u,
                       v, 1.0, 1, false, false);
            break;
          case OPERATION_BINARY_INPLACE_ADD_TYPE:
            detail::axbx(u,
                         u, 1.0, 1, false, false,
                         v, 1.0, 1, false, false);
            break;
          case OPERATION_BINARY_INPLACE_SUB_TYPE:
            detail::axbx(u,
                         u, 1.0, 1, false, false,
                         v, 1.0, 1, false, true);
            break;
          default:
            throw statement_not_supported_exception("Unsupported binary operator for operation in root note (should be =, +=, or -=)");
        }

      }


      inline void execute_impl(statement const & s, statement_node const & root_node)
      {
        if (   root_node.lhs.type_family != SCALAR_TYPE_FAMILY
            && root_node.lhs.type_family != VECTOR_TYPE_FAMILY
            && root_node.lhs.type_family != MATRIX_TYPE_FAMILY)
          throw statement_not_supported_exception("Unsupported lvalue encountered in head node.");

        switch (root_node.rhs.type_family)
        {
          case COMPOSITE_OPERATION_FAMILY:
            execute_composite(s, root_node);
            break;
          case SCALAR_TYPE_FAMILY:
          case VECTOR_TYPE_FAMILY:
          case MATRIX_TYPE_FAMILY:
            execute_single(s, root_node);
            break;
          default:
            throw statement_not_supported_exception("Invalid rvalue encountered in vector assignment");
        }

      }
    }

    inline void execute(statement const & s)
    {
      // simply start execution from the root node:
      detail::execute_impl(s, s.array()[s.root()]);
    }


  }

} //namespace viennacl

#endif