/usr/share/acl2-6.5/books/tools/bstar.lisp is in acl2-books-source 6.5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 | ; b* -- pluggable sequencing/binding macro thing
; Copyright (C) 2007-2014 Centaur Technology
;
; Contact:
; Centaur Technology Formal Verification Group
; 7600-C N. Capital of Texas Highway, Suite 300, Austin, TX 78731, USA.
; http://www.centtech.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Sol Swords <sswords@centtech.com>
(in-package "ACL2")
(include-book "xdoc/base" :dir :system)
(defxdoc b*
:parents (macro-libraries)
:short "The @('b*') macro is a replacement for @(see let*) that adds support
for multiple return values, mixing control flow with binding, causing side
effects, introducing type declarations, and doing other kinds of custom pattern
matching."
:long "<h3>Introduction</h3>
<p>To use @('b*') you will need to load the following book:</p>
@({
(include-book \"tools/bstar\" :dir :system)
})
<p>In its most basic form, the @('b*') macro is nearly a drop-in replacement
for @(see let*). For instance, these are equivalent:</p>
@({
(let* ((x 1) (b* ((x 1)
(y 2) == (y 2)
(z (+ x y))) (z (+ x y)))
(list x y z)) (list x y z))
})
<p>But beyond simple variable bindings, @('b*') provides many useful, extended
@(see b*-binders). A simple example is the <see topic='@(url patbind-mv)'>mv
binder</see>, which can nicely avoid switching between @(see let*) and @(see
mv-let). For instance:</p>
@({
(let* ((parts (get-parts args))) (b* ((parts (get-parts args))
(mv-let (good bad) == ((mv good bad) (split-parts parts))
(split-parts parts) (new-good (mark-good good))
(let* ((new-good (mark-good good)) (new-bad (mark-bad bad)))
(new-bad (mark-bad bad))) (append new-good new-bad))
(append new-good new-bad))))
})
<p>Another interesting example is the <see topic='@(url patbind-when)'>when
binder</see>, which allows for a sort of \"early exit\" from the @('b*') form
without needing to alternate between @('let*') and @('if'). For instance:</p>
@({
(let* ((sum (get-sum (car x)))) (b* ((sum (get-sum (car x)))
(if (< sum limit) == ((when (< sum limit))
ans ans)
(let* ((ans (+ ans sum)) (ans (+ ans sum))
(limit (+ limit 1))) (limit (+ limit 1)))
(fn (cdr x) ans limit)))) (fn (cdr x) ans limit))
})
<p>The only part of the @('let*') syntax that is not available in @('b*') is
the @(see declare) syntax. However, @('ignore')/@('ignorable') declarations
are available using a different syntax (see below), and @(see type-spec)
declarations are available using the <see topic='@(url patbind-the)'>the
binder.</see></p>
<h3>General Form</h3>
<p>The general syntax of b* is:</p>
@({
(b* <list-of-bindings> . <list-of-result-forms>)
})
<p>where a <i>result form</i> is any ACL2 term, and a <i>binding</i> is</p>
@({
(<binder-form> [<expression>])
})
<p>Depending on the binder form, it may be that multiple expressions are
allowed or only a single one.</p>
<p>The @('tools/bstar') book comes with several useful b* binders already
defined, which we describe below. You can also define your own, custom binder
forms to extend the syntax of @('b*') to provide additional kinds of pattern
matching or to implement common coding patterns. For example, the @(see
std::defaggregate) macro automatically introduces new @('b*') binders that let
you access the fields of structures using a C-like @('employee.name') style
syntax.</p>
<p>Note: One difference between @('let*') and @('b*') is that @('b*') allows
multiple forms to occur in the body, and returns the value of the last form.
For example:</p>
@({
(b* ((x 1)
(y 2)
(z (+ x y)))
(cw \"Hello, \")
(cw \" world!~%\")
(list x y z))
})
<p>Will print @('Hello, world!') before returning @('(1 2 3)'), whereas putting
these @(see cw) statements into a @(see let*) form would be a syntax error.</p>
<h3>Built-In B* Binders</h3>
<p>Here is a nonsensical example that gives a flavor for the kind of b* binders
that are available \"out of the box.\"</p>
@({
(b* ( ;; don't forget the first open paren! (like with let*)
;; let*-like binding to a single variable:
(x (cons 'a 'b))
;; mv binding
((mv y z) (return-two-values x x))
;; No binding: expression evaluated for side effects
(- (cw \"Hello\")) ;; prints \"Hello\"
;; Binding with type declaration:
((the (integer 0 100) n) (foo z))
;; MV which ignores a value:
((mv & a) (return-garbage-in-first-mv y z))
;; Binds value 0 to C and value 1 to D,
;; declares (ignorable C) and (ignore D)
((mv ?c ?!d) (another-mv a z))
;; Bind V to the middle value of an error triple,
;; quitting if there is an error condition (a la er-let*)
((er v) (trans-eval '(len (list 'a 1 2 3)) 'foo state))
;; The WHEN, IF, and UNLESS constructs insert an IF in the
;; binding stream. WHEN and IF are equivalent.
((when v) (finish-early-because-of v))
((if v) (finish-early-because-of v))
((unless c) (finish-early-unless c))
;; Pattern-based binding using cons, where D is ignorable
((cons (cons b c) ?d) (must-return-nested-conses a))
;; Patterns based on LIST and LIST* are also supported:
((list a b) '((1 2) (3 4)))
((list* a (the string b) c) '((1 2) \"foo\" 5 6 7))
;; Alternate form of pattern binding with cons nests, where G is
;; ignored and F has a type declaration:
(`(,e (,(the (signed-byte 8) f) . ,?!g))
(makes-a-list-of-conses b))
;; Pattern with user-defined constructor:
((my-tuple foo bar hum) (something-of-type-my-tuple e c g))
;; Don't-cares with pattern bindings:
((my-tuple & (cons carbar &) hum) (something-else foo f hum))
;; Pattern inside an mv:
((mv a (cons & c)) (make-mv-with-cons))
) ;; also don't forget the close-paren after the binder list
;; the body (after the binder list) is an implicit PROGN$
(run-this-for-side-effects ...)
(return-this-expression .....))
})
<p>We now give some additional details about these built-in binders. Since
users can also define their own @('b*') binders, you may wish to see @(see
b*-binders) for a more comprehensive list of available binder forms.</p>
<dl>
<dt>@('(mv a b ...)')</dt>
<dd>Produces an @(see mv-let) binding.</dd>
<dt>@('(cons a b)')</dt>
<dd>Binds @('a') and @('b') to @('(car val)') and @('(cdr val)'), respectively,
where @('val') is the result of the corresponding expression.</dd>
<dt>@('(er a)')</dt>
<dd>Produces an ER-LET* binding.</dd>
<dt>@('(list a b ...)')</dt>
<dd>Binds @('a'), @('b'), ... to @('(car val)'), @('(cadr val)'), etc., where
@('val') is the result of the corresponding expression.</dd>
<dt>@('(nths a b ...)')</dt>
<dd>Binds @('a'), @('b'), ... to @('(nth 0 val)'), @('(nth 1 val)'), etc.,
where @('val') is the result of the corresponding expression. This is very
much like @('list'), but may be useful when @(see nth) is disabled.</dd>
<dt>@('(list* a b)')<br/>
@('`(,a . ,b)')</dt>
<dd>Alternatives to the @('cons') binder.</dd>
<dt>@('(the type-spec var)')</dt>
<dd>Binds @('var') to the result of the corresponding expression, and adds
a @(see declare) form saying that @('var') is of the given @(see type-spec).
You can nest @('the') patterns inside other patterns, but @('var') must itself
be a symbol instead of a nested pattern, and @('type-spec') must be a valid
@(see type-spec).</dd>
<dt>@('(if test)')<br/>
@('(when test)')<br/>
@('(unless test)')</dt>
<dd>These forms don't actually produce bindings at all. Instead, they insert\
an @(see if) where one branch is the rest of the @('B*') form and the other is
the \"bound\" expression. For example,
@({
(b* (((if (atom a)) 0)
(rest (of-bindings)))
final-expr)
})
expands to something like this:
@({
(if (atom a)
0
(b* ((rest (of-bindings)))
final-expr))
})
These forms can also create an \"implicit progn\" with multiple expressions,
like this:
@({
(b* (((if (atom a))
(cw \"a is an atom, returning 0\")
0)
...)
...)
})
</dd>
</dl>
<p>Note that the @('cons'), @('list'), @('list*'), and backtick binders may be
nested arbitrarily inside other binders. User-defined binders may often be
arbitrarily nested. For example,</p>
@({
((mv (list `(,a . ,b)) (cons c d)) <form>)
})
<p>will result in the following (logical) bindings:</p>
<ul>
<li>@('a') bound to @('(car (nth 0 (mv-nth 0 <form>)))')</li>
<li>@('b') bound to @('(cdr (nth 0 (mv-nth 0 <form>)))')</li>
<li>@('c') bound to @('(car (mv-nth 1 <form>))')</li>
<li>@('d') bound to @('(cdr (mv-nth 1 <form>))')</li>
</ul>
<h3>Side Effects and Ignoring Variables</h3>
<p>The following constructs may be used in place of variables</p>
<table>
<tr>
<th>@('-')</th>
<td>Dash (@('-')), used as a top-level binding form, will run the corresponding
expressions (in an implicit progn) for side-effects without binding its value.
Used as a lower-level binding form, it will cause the binding to be ignored or
not created.</td>
</tr>
<tr>
<th>@('&')</th>
<td>Ampersand (@('&')), used as a top-level binding form, will cause the
corresponding expression to be ignored and not run at all. Used as a
lower-level binding form, it will cause the binding to be ignored or not
created.</td>
</tr>
<tr>
<th>@('?!')</th>
<td>Any symbol beginning with @('?!') works similarly to the @('&') form. It
is @(see declare)d ignored or not evaluated at all.</td>
</tr>
<tr>
<th>@('?')</th>
<td>Any symbol beginning with @('?') but not @('?!') will make a binding of the symbol
obtained by removing the @('?'), and will make an @('ignorable') declaration for this
variable.</td>
</tr>
</table>
<h3>User-Defined Binders</h3>
<p>B* expands to multiple nestings of another macro, @('PATBIND'), analogously
to how LET* expands to multiple nestings of LET.</p>
<p>New b* binders may be created by defining a macro named @('PATBIND-<name>').
We discuss the detailed interface of user-defined binders below. But first,
note that @('def-patbind-macro') provides a simple way to define certain user binders.
For example, this form is used to define the binder for CONS:</p>
@({
(def-patbind-macro cons (car cdr))
})
<p>This defines a binder macro, @('patbind-cons'), which enables @('(cons a
b)') to be used as a binder form. This binder form must take two arguments
since two destructor functions, @('(car cdr)'), are given to
@('def-patbind-macro'). The destructor functions are each applied to the form
to produce the bindings for the corresponding arguments of the binder.</p>
<p>There are many cases in which @('def-patbind-macro') is not powerful enough.
For example, a binder produced by @('def-patbind-macro') may only take a fixed
number of arguments. More flexible operations may be defined by hand-defining
the binder macro using the form @(see def-b*-binder).</p>
<p>A binder macro, @('patbind-<name>') must take three arguments: @('args'),
@('forms'), and @('rest-expr'). The form</p>
@({
(b* (((foo arg1 arg2) binding1 binding2))
expr)
})
<p>translates to a macro call</p>
@({
(patbind-foo (arg1 arg2) (binding1 binding2) expr)
})
<p>That is:</p>
<ul>
<li>@('args') is the list of arguments given to the binder form,</li>
<li>@('bindings') is the list of expressions bound to them, and</li>
<li>@('expr') is the result expression to be run once the bindings are in place.</li>
</ul>
<p>The definition of the @('patbind-foo') macro determines how this gets
further expanded. Some informative examples of these binder macros may be
found in @('tools/bstar.lisp'); simply search for uses of @(see
def-b*-binder).</p>
<p>Here are some further notes on defining binder macros.</p>
<p>Often the simplest way to accomplish the intended effect of a patbind macro
is to have it construct another @('b*') form to be recursively expanded, or to
call other patbind macros. See, for example, the definition of
@('patbind-list').</p>
<p>Patbind macros for forms that are truly creating bindings should indeed use
@('b*') (or @('patbind'), which is what @('b*') expands to) to create these
bindings, so that ignores and nestings are dealt with uniformly. See, for
example, the definition of @('patbind-nths').</p>
<p>In order to get good performance, destructuring binders such as are produced
by @('def-patbind-macro') bind a variable to any binding that isn't already a
variable or quoted constant. This is important so that in the following form,
@('(foo x y)') is run only once:</p>
@({
(b* (((cons a b) (foo x y))) ...)
})
<p>In these cases, it is good discipline to check the new variables introduced
using the macro @('check-vars-not-free'); since ACL2 does not have gensym, this
is the best option we have. See any definition produced by
@('def-patbind-macro') for examples, and additionally @('patbind-nths'),
@('patbind-er'), and so forth.</p>")
(defxdoc b*-binders
:parents (b*)
:short "List of the available directives usable in @('b*')")
(mutual-recursion
(defun pack-list (args)
(declare (xargs :measure (acl2-count args)
:guard t
:verify-guards nil))
(if (atom args)
nil
(if (atom (cdr args))
(pack-tree (car args))
(append (pack-tree (car args))
(cons #\Space
(pack-list (cdr args)))))))
(defun pack-tree (tree)
(declare (xargs :measure (acl2-count tree)
:guard t))
(if (atom tree)
(if (or (acl2-numberp tree)
(characterp tree)
(stringp tree)
(symbolp tree))
(explode-atom tree 10)
'(#\Space))
(append (cons #\( (pack-tree (car tree)))
(cons #\Space (pack-list (cdr tree)))
(list #\))))))
(defun pack-term (args)
(declare (xargs :guard t
:verify-guards nil))
(intern (coerce (pack-list args) 'string) "ACL2"))
(defmacro pack (&rest args)
`(pack-term (list ,@args)))
(defun macro-name-for-patbind (binder)
(intern-in-package-of-symbol
(concatenate 'string "PATBIND-" (symbol-name binder))
(if (equal (symbol-package-name binder) "COMMON-LISP")
'acl2::foo
binder)))
(defconst *patbind-special-syms* '(t nil & -))
(defun int-string (n)
(coerce (explode-nonnegative-integer n 10 nil) 'string))
(defun str-num-sym (str n)
(intern (concatenate 'string str (int-string n)) "ACL2"))
(defun ignore-var-name (n)
(str-num-sym "IGNORE-" n))
(defun debuggable-binder-list-p (x)
(declare (xargs :guard t))
(cond ((atom x)
(or (equal x nil)
(cw "; Not a binder list; ends with ~x0, instead of nil.~%" x)))
;; This used to check that the cdar was also a cons and a true-list,
;; but this can be left up to the individual binders.
((consp (car x))
(debuggable-binder-list-p (cdr x)))
(t
(cw "; Not a binder list; first bad entry is ~x0.~%" (car x)))))
(defun debuggable-binders-p (x)
(declare (xargs :guard t))
(cond ((atom x)
(or (equal x nil)
(cw "; Not a binder list; ends with ~x0, instead of nil.~%" x)))
;; This used to check that the cdar was also a cons and a true-list,
;; but this can be left up to the individual binders.
((consp (car x)) t)
(t
(cw "; Not a binder list; first bad entry is ~x0.~%" (car x)))))
(defun decode-varname-for-patbind (pattern)
(let* ((name (symbol-name pattern))
(len (length name))
(?p (and (<= 1 len)
(eql (char name 0) #\?)))
(?!p (and ?p
(<= 2 len)
(eql (char name 1) #\!)))
(sym (cond
(?!p (intern-in-package-of-symbol
(subseq name 2 nil) pattern))
(?p (intern-in-package-of-symbol
(subseq name 1 nil) pattern))
(t pattern)))
(ignorep (cond
(?!p 'ignore)
(?p 'ignorable))))
(mv sym ignorep)))
(defun patbindfn (pattern assign-exprs nested-expr)
(cond ((eq pattern '-)
;; A dash means "run this for side effects." In this case we allow
;; multiple terms; these form an implicit progn, in the common-lisp sense.
`(prog2$ (progn$ . ,assign-exprs)
,nested-expr))
((member pattern *patbind-special-syms*)
;; &, T, NIL mean "don't bother evaluating this."
nested-expr)
((atom pattern)
;; A binding to a single variable. Here we don't allow multiple
;; expressions; we believe it's more readable to use - to run things
;; for side effects, and this might catch some paren errors.
(if (cdr assign-exprs)
(er hard 'b* "~
The B* binding of ~x0 to ~x1 isn't allowed because the binding of a variable must be a
single term." pattern assign-exprs)
(mv-let (sym ignorep)
(decode-varname-for-patbind pattern)
;; Can we just refuse to bind a variable marked ignored?
(if (eq ignorep 'ignore)
nested-expr
`(let ((,sym ,(car assign-exprs)))
,@(and ignorep `((declare (,ignorep ,sym))))
,nested-expr)))))
((eq (car pattern) 'quote)
;; same idea as &, t, nil
nested-expr)
(t ;; Binding macro call.
(let* ((binder (car pattern))
(patbind-macro (macro-name-for-patbind binder))
(args (cdr pattern)))
`(,patbind-macro ,args ,assign-exprs ,nested-expr)))))
(defmacro patbind (pattern assign-exprs nested-expr)
(patbindfn pattern assign-exprs nested-expr))
;; (defun b*-fn1 (bindlist expr)
;; (declare (xargs :guard (debuggable-binders-p bindlist)))
;; (if (atom bindlist)
;; expr
;; `(patbind ,(caar bindlist) ,(cdar bindlist)
;; ,(b*-fn1 (cdr bindlist) expr))))
;; (defun b*-fn (bindlist exprs)
;; (declare (xargs :guard (and (debuggable-binders-p bindlist)
;; (consp exprs))))
;; (b*-fn1 bindlist `(progn$ . ,exprs)))
(defun b*-fn (bindlist exprs)
(declare (xargs :guard (and (debuggable-binders-p bindlist)
(consp exprs))))
(if (atom bindlist)
(cons 'progn$ exprs)
`(patbind ,(caar bindlist) ,(cdar bindlist)
(b* ,(cdr bindlist) . ,exprs))))
(defmacro b* (bindlist expr &rest exprs)
(declare (xargs :guard (debuggable-binders-p bindlist)))
(b*-fn bindlist (cons expr exprs)))
(defxdoc def-b*-binder
:parents (b*)
:short "Introduce a new form usable inside @(see b*)."
:long "<p>Usage:</p>
@({
(def-b*-binder name
[:parents parents] ;; default: (b*-binders)
[:short short]
[:long long]
:decls declare-forms
:body body)
})
<p>Introduces a B* binder form of the given name. The given @('body') may use
the variables @('args'), @('forms'), and @('rest-expr'), and will control how
to macroexpand a form like the following:</p>
@({
(b* (((<name> . <args>) . <forms>)) <rest-expr>)
})
<p>The documentation forms are optional, and placeholder documentation will be
generated if none is provided. It is recommended that the parents include
@(see b*-binders) since this provides a single location where the user may see
all of the available binder forms.</p>
<p>This works by introducing a macro named @('patbind-name'). See @(see b*)
for more details.</p>")
(defmacro def-b*-binder (name &key
(parents '(b*-binders))
short long decls body)
(let* ((macro-name (macro-name-for-patbind name))
(short (or short
(concatenate 'string
"@(see acl2::b*) binder form @('" (symbol-name name)
"') (placeholder).")))
(long (or long
(concatenate 'string
"<p>This is a b* binder introduced with @(see acl2::def-b*-binder).</p>
@(def " (symbol-name macro-name) ")"))))
`(progn
(defxdoc ,macro-name :parents ,parents :short ,short :long ,long)
(defmacro ,macro-name (args forms rest-expr) ,@decls ,body)
(table b*-binder-table ',name ',macro-name))))
(defmacro destructure-guard (binder args bindings len)
`(and (or (and (true-listp ,args)
. ,(and len `((= (length ,args) ,len))))
(cw "~%~%**** ERROR ****
Pattern constructor ~x0 needs a true-list of ~@1arguments, but was given ~x2~%~%"
',binder ,(if len `(msg "~x0 " ,len) "")
,args))
(or (and (consp ,bindings)
(eq (cdr ,bindings) nil))
(cw "~%~%**** ERROR ****
Pattern constructor ~x0 needs exactly one binding expression, but was given ~x1~%~%"
',binder ,bindings))))
(defun destructor-binding-list (args destructors binding)
(if (atom args)
nil
(cons (list (car args) (list (car destructors) binding))
(destructor-binding-list (cdr args) (cdr destructors) binding))))
(defmacro def-patbind-macro (binder destructors
&key
(parents '(b*-binders))
short
long)
`(def-b*-binder ,binder
:parents ,parents
:short ,short
:long ,long
:decls ((declare (xargs :guard (destructure-guard ,binder args forms ,(len destructors)))))
:body
(let* ((binding (car forms))
(computedp (or (atom binding)
(eq (car binding) 'quote)))
(bexpr (if computedp binding (pack binding)))
(binders (destructor-binding-list args ',destructors bexpr)))
(if computedp
`(b* ,binders ,rest-expr)
`(let ((,bexpr ,binding))
(declare (ignorable ,bexpr))
(b* ,binders
(check-vars-not-free (,bexpr) ,rest-expr)))))))
;; The arg might be a plain variable, an ignored or ignorable variable, or a
;; binding expression.
(defun var-ignore-list-for-patbind-mv (args igcount mv-vars binders ignores ignorables freshvars)
(if (atom args)
(mv (reverse mv-vars)
(reverse binders)
(reverse ignores)
(reverse ignorables)
(reverse freshvars))
(mv-let (mv-var binder freshp ignorep)
(cond ((or (member (car args) *patbind-special-syms*)
(quotep (car args))
(and (atom (car args)) (not (symbolp (car args)))))
(let ((var (ignore-var-name igcount)))
(mv var nil nil 'ignore)))
((symbolp (car args))
(mv-let (sym ignorep)
(decode-varname-for-patbind (car args))
(case ignorep
(ignore (mv sym nil nil 'ignore))
(ignorable (mv sym nil nil 'ignorable))
(t (mv sym nil nil nil)))))
(t ;; (and (consp (car args))
;; (not (eq (caar args) 'quote)))
(let ((var (pack (car args))))
(mv var (list (car args) var) t nil))))
(var-ignore-list-for-patbind-mv
(cdr args)
(if (eq ignorep 'ignore) (1+ igcount) igcount)
(cons mv-var mv-vars)
(if binder (cons binder binders) binders)
(if (eq ignorep 'ignore) (cons mv-var ignores) ignores)
(if (eq ignorep 'ignorable) (cons mv-var ignorables) ignorables)
(if freshp (cons mv-var freshvars) freshvars)))))
(def-b*-binder mv
:short "@(see b*) binder for multiple values."
:long "<p>Example:</p>
@({
(b* (((mv a b c) (form-returning-three-values)))
form)
})
<p>is equivalent to</p>
@({
(mv-let (a b c)
(form-returning-three-values)
form)
})
<p>The @('mv') binder only makes sense as a top-level binding, but each of its
arguments may be a recursive binding.</p>"
:decls
((declare (xargs :guard (destructure-guard mv args forms nil))))
:body
(mv-let (vars binders ignores ignorables freshvars)
(var-ignore-list-for-patbind-mv args 0 nil nil nil nil nil)
`(mv-let ,vars ,(car forms)
(declare (ignore . ,ignores))
(declare (ignorable . ,ignorables))
(check-vars-not-free
,ignores
(b* ,binders
(check-vars-not-free ,freshvars ,rest-expr))))))
(def-patbind-macro cons (car cdr)
:short "@(see b*) binder for decomposing a @(see cons) into its @(see car)
and @(see cdr)."
:long "<p>Usage:</p>
@({
(b* (((cons a b) (binding-form)))
(result-form))
})
<p>is equivalent to</p>
@({
(let* ((tmp (binding-form))
(a (car tmp))
(b (cdr tmp)))
(result-form))
})
<p>Each of the arguments to the @('cons') binder may be a recursive binder, and
@('cons') may be nested inside other bindings.</p>")
(defun nths-binding-list (args n form)
(if (atom args)
nil
(cons (list (car args) `(nth ,n ,form))
(nths-binding-list (cdr args) (1+ n) form))))
(def-b*-binder nths
:short "@(see b*) binder for list decomposition, using @(see nth)."
:long "<p>Usage:</p>
@({
(b* (((nths a b c) (list-fn ...)))
form)
})
<p>is equivalent to</p>
@({
(b* ((tmp (list-fn ...))
(a (nth 0 tmp))
(b (nth 1 tmp))
(c (nth 2 tmp)))
form)
})
<p>Each of the arguments to the @('nths') binder may be a recursive binder, and
@('nths') may be nested inside other bindings.</p>
<p>This binder is very similar to the @('list') binder, see @(see
patbind-list). However, here we put in explicit calls of @('nth'), whereas the
@('list') binder will put in, e.g., @('car'), @('cadr'), etc. The @('list')
binder is likely to be more efficient in general, but the @('nths') binder may
occasionally be useful when you have @('nth') disabled.</p>"
:decls
((declare (xargs :guard (destructure-guard nths args forms nil))))
:body
(let* ((binding (car forms))
(evaledp (or (atom binding) (eq (car binding) 'quote)))
(form (if evaledp binding (pack binding)))
(binders (nths-binding-list args 0 form)))
(if evaledp
`(b* ,binders ,rest-expr)
`(let ((,form ,binding))
(declare (ignorable ,form))
(b* ,binders
(check-vars-not-free (,form) ,rest-expr))))))
(def-b*-binder nths*
:short "@(see b*) binder for list decomposition, using @(see nth), with one
final @(see nthcdr)."
:long "<p>Usage:</p>
@({
(b* (((nths* a b c d) (list-fn ...)))
form)
})
<p>is equivalent to</p>
@({
(b* ((tmp (list-fn ...))
(a (nth 0 tmp))
(b (nth 1 tmp))
(c (nth 2 tmp))
(d (nthcdr 3 tmp)))
form)
})
<p>Each of the arguments to the @('nths*') binder may be a recursive binder,
and @('nths*') may be nested inside other bindings.</p>
<p>This binder is very similar to the @('list*') binder, see @(see
patbind-list*). However, here we put in explicit calls of @('nth') and
@('nthcdr'), whereas the @('list*') binder will put in, e.g., @('car'),
@('cadr'), etc. The @('list*') binder is likely to be more efficient in
general, but the @('nths*') binder may occasionally be useful when you have
@('nth') disabled.</p>"
:decls
((declare (xargs :guard (and (destructure-guard nths args forms nil)
(< 0 (len args))))))
:body
(let* ((binding (car forms))
(evaledp (or (atom binding) (eq (car binding) 'quote)))
(form (if evaledp binding (pack binding)))
(binders (append (nths-binding-list (butlast args 1) 0 form)
`((,(car (last args)) (nthcdr ,(1- (len args)) ,form))))))
(if evaledp
`(b* ,binders ,rest-expr)
`(let ((,form ,binding))
(declare (ignorable ,form))
(b* ,binders
(check-vars-not-free (,form) ,rest-expr))))))
(def-b*-binder list
:short "@(see b*) binder for list decomposition, using @(see car)/@(see cdr)."
:long "<p>Usage:</p>
@({
(b* (((list a b c) lst))
form)
})
<p>is equivalent to</p>
@({
(b* ((a (car lst))
(tmp1 (cdr lst))
(b (car tmp1))
(tmp2 (cdr tmp1))
(c (car tmp2)))
form)
})
<p>Each of the arguments to the @('list') binder may be a recursive binder, and
@('list') may be nested inside other bindings.</p>"
:decls
((declare (xargs :guard (destructure-guard list args forms nil))))
:body
(if (atom args)
rest-expr
`(patbind-cons (,(car args) (list . ,(cdr args))) ,forms ,rest-expr)))
(def-b*-binder list*
:short "@(see b*) binder for @('list*') decomposition using @(see car)/@(see cdr)."
:long "<p>Usage:</p>
@({
(b* (((list* a b c) lst)) form)
})
<p>is equivalent to</p>
@({
(b* ((a (car lst))
(tmp1 (cdr lst))
(b (car tmp1))
(c (cdr tmp1)))
form)
})
<p>Each of the arguments to the @('list*') binder may be a recursive binder,
and @('list*') may be nested inside other bindings.</p>"
:decls
((declare (xargs :guard (and (consp args)
(destructure-guard list* args forms nil)))))
:body
(if (atom (cdr args))
`(patbind ,(car args) ,forms ,rest-expr)
`(patbind-cons (,(car args) (list* . ,(cdr args))) ,forms ,rest-expr)))
(defun assigns-for-assocs (args alist)
(if (atom args)
nil
(cons (if (consp (car args))
`(,(caar args) (cdr (assoc ,(cadar args) ,alist)))
(mv-let (sym ign)
(decode-varname-for-patbind (car args))
(declare (ignore ign))
`(,(car args) (cdr (assoc ',sym ,alist)))))
(assigns-for-assocs (cdr args) alist))))
(def-b*-binder assocs
:short "@(see b*) binder for extracting particular values from an alist."
:long "<p>Usage:</p>
@({
(b* (((assocs (a akey) b (c 'foo)) alst))
form)
})
<p>is equivalent to</p>
@({
(b* ((a (cdr (assoc akey alst)))
(b (cdr (assoc 'b alst)))
(c (cdr (assoc 'foo alst))))
form)
})
<p>The arguments to the @('assocs') binder should be either single symbols or
pairs of the form @('(var key)'):</p>
<ul>
<li>In the pair form, @('var') is the variable that will be bound to the
associated value of @('key') in the bound object, which should be an alist.
Note that @('key') <i>does not get quoted</i>; it may itself be some
expression.</li>
<li>An argument consisting of the single symbol, @('var'), is equivalent
to the pair @('(var 'var)').</li>
</ul>
<p>Each of the arguments in the @('var') position of the pair form may be a
recursive binder, and @('assocs') may be nested inside other bindings.</p>"
:body
(mv-let (pre-bindings name rest)
(if (and (consp (car forms))
(not (eq (caar forms) 'quote)))
(mv `((?tmp-for-assocs ,(car forms)))
'tmp-for-assocs
`(check-vars-not-free (tmp-for-assocs)
,rest-expr))
(mv nil (car forms) rest-expr))
`(b* (,@pre-bindings
. ,(assigns-for-assocs args name))
,rest)))
(def-b*-binder er
:short "@(see b*) binder for error triples."
:long "<p>Usage:</p>
@({
(b* (((er x) (error-triple-form)))
(result-form))
})
<p>is equivalent to</p>
@({
(er-let* ((x (error-triple-form)))
(result-form))
})
<p>which itself is approximately equivalent to</p>
@({
(mv-let (erp val state)
(error-triple-form)
(if erp
(mv erp val state)
(result-form)))
})
<p>The @('er') binder only makes sense as a top-level binding, but its argument
may be a recursive binding.</p>"
:decls ((declare (xargs :guard (destructure-guard er args forms 1))))
:body
`(mv-let (patbind-er-fresh-variable-for-erp
patbind-er-fresh-variable-for-val
state)
,(car forms)
(if patbind-er-fresh-variable-for-erp
(mv patbind-er-fresh-variable-for-erp
patbind-er-fresh-variable-for-val
state)
(patbind ,(car args)
(patbind-er-fresh-variable-for-val)
(check-vars-not-free
(patbind-er-fresh-variable-for-val
patbind-er-fresh-variable-for-erp)
,rest-expr)))))
(def-b*-binder cmp
:short "@(see b*) binder for context-message pairs."
:long "<p>Usage:</p>
@({
(b* (((cmp x) (cmp-returning-form)))
(result-form))
})
<p>is equivalent to</p>
@({
(er-let*-cmp ((x (cmp-returning-form)))
(result-form))
})
<p>which itself is approximately equivalent to</p>
@({
(mv-let (ctx x)
(cmp-returning-form)
(if ctx
(mv ctx x)
(result-form)))
})
<p>The @('cmp') binder only makes sense as a top-level binding, but its
argument may be a recursive binding.</p>"
:decls ((declare (xargs :guard (destructure-guard cmp args forms 1))))
:body
`(mv-let (patbind-cmp-fresh-variable-for-ctx
patbind-cmp-fresh-variable-for-val)
,(car forms)
(if patbind-cmp-fresh-variable-for-ctx
(mv patbind-cmp-fresh-variable-for-ctx
patbind-cmp-fresh-variable-for-val)
(patbind ,(car args)
(patbind-cmp-fresh-variable-for-val)
(check-vars-not-free
(patbind-cmp-fresh-variable-for-val
patbind-cmp-fresh-variable-for-ctx)
,rest-expr)))))
(def-b*-binder state-global
:short "@(see b*) binder for accessing state globals."
:long "<p>Usage:</p>
@({
(b* (((state-global x) (value-form)))
(result-form))
})
<p>is equivalent to</p>
@({
(state-global-let* ((x (value-form)))
(result-form))
})"
:decls
((declare (xargs :guard
(and (destructure-guard
state-global args forms 1)
(or (symbolp (car args))
(cw "~%~%**** ERROR ****
Pattern constructor ~x0 needs a single argument which is a symbol, but got ~x1~%~%"
'state-global args))))))
:body
`(state-global-let*
((,(car args) ,(car forms)))
,rest-expr))
(def-b*-binder when
:short "@(see b*) control flow operator."
:long "<p>The @('when') binder provides a way to exit early from the sequence
of computations represented by a list of @(see b*) binders.</p>
<h5>Typical example:</h5>
@({
(b* ((lst (some-computation arg1 arg2 ...))
((when (atom lst))
;; No entries to process, nothing to do, so just return
;; nil without building the expensive tbl.
nil)
(tbl (build-expensive-table ...)))
(compute-expensive-result lst tbl ...))
})
<h5>General Form:</h5>
@({
(b* (((when (condition-form))
(early-form1)
...
(early-formN))
... rest of bindings ...)
(late-result-form))
})
<p>is equivalent to</p>
@({
(if (condition-form)
(progn$ (early-form1)
...
(early-formN))
(b* (... rest of bindings ...)
(late-result-form)))
})
<h5>Special Case</h5>
<p>In the special case where no early-forms are provided, the condition itself
is returned. I.e.,</p>
@({
(b* (((when (condition-form)))
... rest of bindings)
(late-result-form))
})
<p>is equivalent to</p>
@({
(or (condition-form)
(b* (... rest of bindings ...)
(late-result-form)))
})"
:decls ((declare (xargs :guard (and (consp args) (eq (cdr args) nil)))))
:body
(if forms
`(if ,(car args)
(progn$ . , forms)
,rest-expr)
`(or ,(car args) ,rest-expr)))
(def-b*-binder if
:short "@(see b*) control flow operator."
:long "<p>The B* binders @('if') and @('when') are exactly equivalent. See
@(see patbind-when) for documentation. We generally prefer to use @('when')
instead of @('if').</p>"
:decls ((declare (xargs :guard (and (consp args) (eq (cdr args) nil)))))
:body
`(if ,(car args)
(progn$ . ,forms)
,rest-expr))
(def-b*-binder unless
:short "@(see b*) control flow operator."
:long "<p>See @(see patbind-when). The B* binder @('unless') is identical
except that it negates the condition, so that the early exit is taken when the
condition is false.</p>"
:decls ((declare (xargs :guard (and (consp args) (eq (cdr args) nil)))))
:body
`(if ,(car args)
,rest-expr
(progn$ . ,forms)))
(def-b*-binder run-when
:short "@(see b*) conditional execution operator."
:long "<p>Typical example: this always returns @('ans'), but sometimes prints
out warning messages:</p>
@({
(b* ((ans (some-computation arg1 ... argn))
((run-when (< ans 0))
(cw \"Warning: answer was negative?~%\")
(cw \"Args were ~x0, ~x1, ...\" arg1 arg2 ...)))
ans)
})
<p>Usage:</p>
@({
(b* (((run-when (condition-form))
(run-form1)
...
(run-formn)))
(result-form))
})
<p>is equivalent to</p>
@({
(prog2$ (and (condition-form)
(progn$ (run-form1)
...
(run-formn)))
(result-form))
})"
:decls ((declare (xargs :guard (and (consp args) (eq (cdr args) nil)))))
:body
`(prog2$ (and ,(car args)
(progn$ . , forms))
,rest-expr))
(def-b*-binder run-if
:short "@(see b*) conditional execution operator."
:long "<p>See @(see patbind-run-when). The B* binders @('run-if') and
@('run-when') are exactly equivalent.</p>"
:decls ((declare (xargs :guard (and (consp args) (eq (cdr args) nil)))))
:body
`(prog2$ (and ,(car args)
(progn$ . ,forms))
,rest-expr))
(def-b*-binder run-unless
:short "@(see b*) conditional execution operator."
:long "<p>See @(see patbind-run-when). The B* binder @('run-unless') is
exactly like @('run-when'), except that it negates the condition so that the
extra forms are run when the condition is false.</p>"
:decls ((declare (Xargs :guard (and (consp args) (eq (cdr args) nil)))))
:body
`(prog2$ (or ,(car args)
(progn$ . ,forms))
,rest-expr))
(def-b*-binder the
:short "@(see b*) type declaration operator."
:long "<p>This b* binder provides a concise syntax for type declarations,
which can sometimes improve the efficiency of Common Lisp code. See the
documentation for @(see declare) and @(see type-spec) for more information
about type declarations.</p>
<p>Usage example:</p>
@({
(b* (((the integer x) (form)))
(result-form))
})
<p>is equivalent to</p>
@({
(let ((x (form)))
(declare (type integer x))
(result-form))
})
<p>The @('the') binder form only makes sense on variables, though those
variables may be prefixed with the @('?') or @('?!') to make them ignorable or
ignored. It may be nested within other binder forms.</p>"
:decls
((declare (xargs :guard
(and (destructure-guard the args forms 2)
(or (translate-declaration-to-guard
(car args) 'var nil)
(cw "~%~%**** ERROR ****
The first argument to pattern constructor ~x0 must be a type-spec, but is ~x1~%~%"
'the (car args)))
(or (symbolp (cadr args))
(cw "~%~%**** ERROR ****
The second argument to pattern constructor ~x0 must be a symbol, but is ~x1~%~%"
'the (cadr args)))))))
:body
(mv-let (sym ignorep)
(decode-varname-for-patbind (cadr args))
(if (eq ignorep 'ignore)
rest-expr
`(let ((,sym ,(car forms)))
,@(and ignorep `((declare (ignorable ,sym))))
(declare (type ,(car args) ,sym))
,rest-expr))))
;; Find a pair in the alist whose key is a symbol whose name is str.
(defun b*-assoc-symbol-name (str alist)
(if (atom alist)
nil
(if (and (consp (car alist))
(equal str (symbol-name (caar alist))))
(car alist)
(b*-assoc-symbol-name str (cdr alist)))))
(defun b*-decomp-err (arg binder component-alist)
(er hard? 'b*-decomp-bindings
"Bad ~s0 binding: ~x2.~%For a ~s0 binding you may use the following ~
kinds of arguments: keyword/value list form :field binder ..., ~
name-only where the variable bound is the same as a field name, ~
or parenthseized (binder :field). The possible fields are ~v1."
binder (strip-cars component-alist) arg))
;; Makes b* bindings for a decomposition specified by component-alist.
;; Component-alist binds field names to their accessor functions.
;; Accepts a number of forms of bindings:
(defun b*-decomp-bindings (args binder component-alist var)
(b* (((when (atom args)) nil)
((when (keywordp (car args)))
(b* ((look (b*-assoc-symbol-name (symbol-name (car args))
component-alist))
((unless look)
(b*-decomp-err (car args) binder component-alist))
((unless (consp (cdr args)))
(b*-decomp-err args binder component-alist)))
(cons `(,(cadr args) (,(cdr look) ,var))
(b*-decomp-bindings (cddr args) binder component-alist var))))
((when (symbolp (car args)))
(b* ((look (b*-assoc-symbol-name (symbol-name (car args))
component-alist))
((unless look)
(b*-decomp-err (car args) binder component-alist)))
(cons `(,(car args) (,(cdr look) ,var))
(b*-decomp-bindings (cdr args) binder component-alist var))))
((unless (and (true-listp (car args))
(equal (length (car args)) 2)
(symbolp (cadar args))))
(b*-decomp-err (car args) binder component-alist))
(look (b*-assoc-symbol-name (symbol-name (cadar args)) component-alist))
((unless look)
(b*-decomp-err (car args) binder component-alist)))
(cons `(,(caar args) (,(cdr look) ,var))
(b*-decomp-bindings (cdr args) binder component-alist var))))
(defun b*-decomp-fn (args forms rest-expr binder component-alist)
(b* (((unless (and (true-listp forms)
(= (length forms) 1)))
(er hard? 'b*-decomp-fn
"Too many RHS forms in ~x0 binder: ~x1~%" binder forms))
(rhs (car forms))
(var (if (symbolp rhs) rhs 'b*-decomp-temp-var))
(bindings (b*-decomp-bindings args binder component-alist var)))
`(b* ,(if (symbolp rhs)
bindings
(cons `(,var ,rhs) bindings))
,rest-expr)))
(defmacro def-b*-decomp (name &rest component-alist)
`(def-b*-binder ,name
:body
(b*-decomp-fn args forms rest-expr ',name ',component-alist)))
(defun patbind-local-stobjs-helper (stobjs retvals form)
(declare (xargs :mode :program))
(if (atom stobjs)
form
(let* ((stobj (if (consp (car stobjs))
(caar stobjs)
(car stobjs)))
(rest-retvals (remove-eq stobj retvals)))
(patbind-local-stobjs-helper
(cdr stobjs)
rest-retvals
`(with-local-stobj
,stobj
(mv-let ,retvals
,form
,(if (consp (cdr rest-retvals))
`(mv . ,rest-retvals)
(car rest-retvals)))
. ,(and (consp (car stobjs))
(cdar stobjs)))))))
(defun patbind-local-stobj-arglistp (args)
(declare (xargs :mode :program))
(if (atom args)
(eq args nil)
(and (let ((x (car args)))
(or (symbolp x)
(case-match x
((stobj creator)
(and (symbolp stobj)
(symbolp creator))))))
(patbind-local-stobj-arglistp (cdr args)))))
(defun patbind-local-stobjs-fn (args forms rest-expr)
(declare (xargs :mode :program))
(b* (((unless (patbind-local-stobj-arglistp args))
(er hard? 'patbind-local-stobjs-fn
"In local-stobjs b* binder, arguments must be symbols or
(stobj creator) pairs"))
((unless (and (= (len forms) 1)
(symbol-listp (car forms))
(eq (caar forms) 'mv)))
(er hard? 'patbind-local-stobjs-fn
"In local-stobjs b* binder, bound form must be an MV
of some symbols, giving the return values"))
(retvals (cdar forms)))
(patbind-local-stobjs-helper
args retvals rest-expr)))
(def-b*-binder local-stobjs
:short "@(see b*) binder for @(see with-local-stobj) declarations."
;; BOZO document me, but gaaah
:body
(patbind-local-stobjs-fn args forms rest-expr))
(def-b*-binder fun
:short "@(see b*) binder to produce @(see flet) forms."
:long "<p>Usage:</p>
@({
(b* (((fun (foo a b c)) (body-form)))
(result-form))
})
<p>is equivalent to</p>
@({
(flet ((foo (a b c) (body-form)))
(result-form))
})"
:decls
((declare (xargs :guard
(and
;; only arg is a symbol-list (foo a b c)
(consp args)
(symbol-listp (car args))
(consp (car args))
(eq (cdr args) nil)
;; body is implicit progn$?
(true-listp forms)
))))
:body
`(flet ((,(caar args) ,(cdar args) (progn$ . ,forms)))
,rest-expr))
(defun access-b*-bindings (recname var pairs)
(if (atom pairs)
nil
(cons
(if (atom (car pairs))
(list (car pairs) `(acl2::access ,recname ,var
,(intern-in-package-of-symbol
(symbol-name (car pairs))
:keyword)))
(list (caar pairs) `(acl2::access ,recname ,var
,(intern-in-package-of-symbol
(symbol-name (cadar pairs))
:keyword))))
(access-b*-bindings recname var (cdr pairs)))))
(def-b*-binder access
:short "@(see b*) binder for accessing record structure fields introduced
with ACL2's @('defrec')."
:body
`(b* ,(access-b*-bindings (car args) (car forms) (cdr args))
,rest-expr))
|