This file is indexed.

/usr/share/acl2-6.5/books/misc/meta-lemmas.lisp is in acl2-books-source 6.5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
; meta-lemmas.lisp  --  meta-lemmas for NTH and MEMBER
; Copyright (C) 1997  Computational Logic, Inc.
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
;;;
;;;    "meta-lemmas.lisp"
;;;
;;;    This book defines a useful set of meta lemmas.  This book includes the
;;;    meta functions, and the DEFEVALUATOR forms and lemmas. This book
;;;    requires only the Acl2 initialization theory for its certification.
;;;
;;;    Special thanks to Matt Kaufmann of CLInc for getting this one started.
;;;    
;;;    Bishop Brock
;;;    Computational Logic, Inc.
;;;    1717 West Sixth Street, Suite 290
;;;    Austin, Texas 78703
;;;    (512) 322-9951
;;;    brock@cli.com
;;;
;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(in-package "ACL2")

;;;****************************************************************************
;;;
;;;    Introduction
;;;
;;;****************************************************************************

(deflabel meta-lemmas
  :doc ":doc-section miscellaneous
  A book of general purpose meta-lemmas.
  ~/
  Note that it may be a good idea to load this book last, so that the lemmas
  in this book will take precedence over all others.
  ~/~/")

(deflabel meta-functions
  :doc ":doc-section meta-lemmas
  Meta-functions used to define the meta-lemmas.
  ~/~/~/")

;;;****************************************************************************
;;;
;;;    The Evaluator.
;;;
;;;    We only have one evaluator, which we'll extend as necessary.
;;;
;;;****************************************************************************

(defevaluator meta-ev meta-ev-list	
  ((car x)
   (cdr x)
   (cons x y)
   (eql x y)
   (if x y z)
; [Changed by Matt K. to handle changes to member, assoc, etc. after ACL2 4.2
;  (replaced member by member-equal).]
   (member-equal x y)
   (nth x y)
   (true-listp x)))


;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;;;
;;;  REDUCE-NTH-META-CORRECT 
;;;
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

(defun formal-consp (term)
  ":doc-section meta-functions
  The definition of CONSP on formal terms.
  ~/~/
  Note that FORMAL-CONSP is a `formal' predicate returning (QUOTE T)
  or (QUOTE NIL).~/"
  (declare (xargs :guard (pseudo-termp term)))
  (case-match term
    (('QUOTE x) `(QUOTE ,(consp x)))
    (('CONS x y) (declare (ignore x y)) *t*)
    (& *nil*)))
   
(defun formal-true-listp (term)
  ":doc-section meta-functions
  The definition of TRUE-LISTP on formal terms.
  ~/~/
  Note that FORMAL-TRUE-LISTP is a `formal' predicate returning (QUOTE T)
  or (QUOTE NIL).~/"
  (declare (xargs :guard (pseudo-termp term)))
  (case-match term
    (('QUOTE x) `(QUOTE ,(true-listp x)))
    (('CONS x y) (declare (ignore x)) (formal-true-listp y))
    (& *nil*)))

(defun formal-nth (n lst)
  ":doc-section meta-functions
  The definition of (NTH n lst) for integers n and formal terms lst.
  ~/~/~/"
  (declare (xargs :guard (and (integerp n)
                              (<= 0 n)
                              (pseudo-termp lst)
                              (equal (formal-true-listp lst) *t*))
                  :guard-hints
		  (("Goal"
		    :expand (formal-true-listp lst)))))
  (case-match lst
    (('QUOTE x) `(QUOTE ,(nth n x)))
    (& (cond
	((zp n) (fargn lst 1))
	(t (formal-nth (- n 1) (fargn lst 2)))))))

(defun reduce-nth-meta (term)
  ":doc-section meta-functions
  Meta function for NTH.
  ~/~/
  This meta function is designed to quickly rewrite terms of the form
  (NTH n lst) where n is an integer and lst is formally a proper list. ~/"
  (declare (xargs :guard (pseudo-termp term)))
  (case-match term
    (('NTH ('QUOTE n) lst) (if (and (integerp n)
				    (<= 0 n)
				    (equal (formal-true-listp lst) *t*))
			       (formal-nth n lst)
			     term))
    (& term)))

(encapsulate ()

  (local
   (defthm formal-true-listp-implies-true-listp-meta-ev
     (implies
      (and (pseudo-termp term)
	   (alistp a)
	   (equal (formal-true-listp term) *t*))
      (true-listp (meta-ev term a)))
     :hints
     (("Goal"
       :induct (formal-true-listp term)))))

  (local
   (defthm reduce-nth-meta-correct-lemma
     (implies
      (and (integerp n)
	   (>= n 0)
	   (pseudo-termp lst)
	   (equal (formal-true-listp lst) *t*)
	   (alistp a))
      (equal (meta-ev (formal-nth n lst) a)
	     (nth n (meta-ev lst a))))
     :hints
     (("Goal"
       :induct (formal-nth n lst)
       :expand (formal-true-listp lst)))))

  (defthm reduce-nth-meta-correct
    (implies
     (and (pseudo-termp term)
	  (alistp a))
     (equal (meta-ev term a)
	    (meta-ev (reduce-nth-meta term) a)))
    :rule-classes ((:meta :trigger-fns (nth)))
    :doc ":doc-section meta-lemmas
    Meta: Simplify (NTH n lst) for integer n and formal true-listp lst.
    ~/
    This meta lemma was designed to quickly rewrite the terms generated by
    the MV-LET macro.~/~/"))


;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;;;
;;;   EXPAND-MEMBER-META-CORRECT
;;;
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

(defun formal-member (x l)
  ":doc-section meta-functions
  The definition of MEMBER for any x on an EQLABLE-LISTP constant l.
  ~/~/
  This definition reposes the question (MEMBER x l) as a set of nested
  IFs.~/"
  (declare (xargs :guard (and (pseudo-termp x)
			      (eqlable-listp l))))
  (cond
   ((endp l) *nil*)
   (t `(IF (EQL ,x (QUOTE ,(car l)))
	   (QUOTE ,l)
	 ,(formal-member x (cdr l))))))
  
; [Changed by Matt K. to handle changes to member, assoc, etc. after ACL2 4.2
;  (replaced member by member-equal).]
(defun expand-member-meta (term)
  ":doc-section meta-functions
  Meta function for MEMBER-EQUAL.
  ~/~/
  This meta function is designed to quickly rewrite (MEMBER-EQUAL x l) to a set
  of nested IFs.  This will happen if l is a EQLABLE-LISTP constant.  Terms of
  this form arise for example in CASE macros.~/"

  (declare (xargs :guard (pseudo-termp term)))

  (case-match term
    (('MEMBER-EQUAL x ('QUOTE l)) (if (eqlable-listp l)
                                      (formal-member x l)
                                    term))
    (& term)))

; [Changed by Matt K. to handle changes to member, assoc, etc. after ACL2 4.2
;  (replaced member by member-equal in documentation).]
(encapsulate ()

  (local
   (defthm pseudo-termp-formal-member
     (implies
      (and (pseudo-termp x)
	   (eqlable-listp l))
      (pseudo-termp (formal-member x l)))))

  (local
   (defthm eqlable-listp-recognizer
     (implies
      (eqlable-listp l)
      (true-listp l))
     :rule-classes :compound-recognizer))

  (local
   (defthm expand-member-meta-correct-lemma
     (implies
      (and (pseudo-termp x)
	   (eqlable-listp l)
	   (alistp a))
      (equal (meta-ev (formal-member x l) a)
; [Changed by Matt K. to handle changes to member, assoc, etc. after ACL2 4.2
;  (replaced member by member-equal).]
	     (member-equal (meta-ev x a) l)))
     :hints
     (("Goal"
       :induct (formal-member x l)))))

  (defthm expand-member-meta-correct
    (implies
     (and (pseudo-termp term)
	  (alistp a))
     (equal (meta-ev term a)
	    (meta-ev (expand-member-meta term) a)))
    :rule-classes ((:meta :trigger-fns (member)))
    :doc ":doc-section meta-lemmas
    Meta: Rewrite (MEMBER-EQUAL x l) to a set of nested IFs.
    ~/
    If l is an EQLABLE-LISTP constant, then we rewrite (MEMBER-EQUAL x l) to a
    set of nested IFs.  This lemma is used for example to rewrite expressions
    generated by CASE macros for multiple choices, without the necessity of
    ENABLEing MEMBER-EQUAL and EQLABLE-LISTP.~/~/"))


;;;****************************************************************************
;;;
;;;    Theories
;;;
;;;****************************************************************************

(deftheory meta-lemma-theory
  '(reduce-nth-meta-correct expand-member-meta-correct)
  :doc ":doc-section meta-lemmas
  A theory of useful meta-lemmas.
  ~/
  This theory contains the following lemmas:
  ~/~/
  :cite reduce-nth-meta-correct
  :cite expand-member-meta-correct")