This file is indexed.

/usr/share/acl2-6.5/books/misc/hons-help.lisp is in acl2-books-source 6.5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
; Copyright (C) 2013, Regents of the University of Texas
; Written by Bob Boyer and Warren A. Hunt, Jr. (some years before that)
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

;   hons-help.lisp                                Boyer & Hunt

(in-package "ACL2")
(include-book "gentle")
(set-state-ok t)


; In this file one may find some helpful functions and lemmas in the "HONS
; School", but none of them require "under the hood" definitions.  That is, the
; "user" could do all this by himself.



(defmacro all-memoized-fns (&optional show-conditions)
  (if show-conditions
      '(table-alist 'memoize-table (w state))
    '(strip-cars (table-alist 'memoize-table (w state)))))



; FAST ALIST UTILITIES -----------------------------------------------------

(defn make-fal (al name)
  ":Doc-Section Hons-and-Memoization
  Make a fast alist out of an alist~/

  ~c[(MAKE-FAL al name)] copies the alist AL with ~l[hons-acons] to make a fast
  alist that ends with NAME.~/

  Typically ~c[name] is an atom, and it becomes the final ~l[cdr] of the new
  fast alist.  Some atoms have special meanings, e.g., they act as size hints;
  see ~l[hons-acons] for details.

  However, ~c[name] can also be an existing fast alist.  In this case, this
  fast alist is extended with the new pairs from ~c[al], using ~l[hons-acons].
  Note that ~c[name] will no longer be fast after the call of ~c[make-fal].

  There's nothing under-the-hood about ~c[make-fal]; it just repeatedly calls
  ~c[hons-acons].  The built-in function ~l[make-fast-alist] is generally more
  efficient and can be nicer to reason about because logically it is just the
  identity.  On the other hand, ~c[make-fast-alist] can't be used to extend an
  existing fast alist like ~c[make-fal].~/"

  (cond ((atom al)
         name)
        ((atom (car al))
         (make-fal (cdr al) name))
        (t
         (hons-acons (caar al)
                     (cdar al)
                     (make-fal (cdr al) name)))))

(defmacro ansfl (x y)

  "(ANSFL x y) returns the single value X after first flushing
  the fast hash table backing for Y, if Y is a fast alist.  Thus

     (ANSFL X Y) = X

  X must be a form that returns a single value."

  `((lambda (ansfl-do-not-use-elsewhere1 ansfl-do-not-use-elsewhere2)
      (declare (ignore ansfl-do-not-use-elsewhere2))
      ansfl-do-not-use-elsewhere1)
    ,x
    (flush-hons-get-hash-table-link ,y)))


; [Jared]: Removing ansfl1 since I think we don't use it?

;; (defmacro ansfl1 (x)
;;   `((lambda (ansfl1-do-not-use-elsewhere1)
;;       ((lambda (ansfl1-do-not-use-elsewhere1
;;                 ansfl1-do-not-use-elsewhere2)
;;          (declare (ignore ansfl1-do-not-use-elsewhere2))
;;         ansfl1-do-not-use-elsewhere1)))
;;     ,x))

(defmacro ansfl-list (l x)

; (ansfl-list (a b c ...) x) -- frees a, b, c, ..., returns x

  (if (atom l)
      x
    `(ansfl (ansfl-list ,(cdr l) ,x)
            ,(car l))))


(defn ansfl-last-list (r bindings)

; [Jared]: BOZO please document this.  It's used in het*.

; bindings is an alist.  in het* the bindings are names being bound
; like in a let*.
;
; all of the names being bound are freed, then we return r.

  (if (atom bindings)
      r
    `(ansfl ,(ansfl-last-list r (gentle-cdr bindings))
            ,(gentle-caar bindings))))

(defmacro het* (bindings &rest r)

; This implementation of het* is somewhat defective in that it is
; incapable of returning multiple values.  We cannot see how to fix
; it.

; this is basically let*, but we try to fast-alist-free everything that gets
; bound.  which works out, in a weird kind of way, for anything that
; isn't a fast alist anyway, but is really pretty gross.

  `(let* ,bindings
     ,@(butlast r 1)
     ,(ansfl-last-list (car (last r)) bindings)))

(defmacro with-fast-list (var term name form)

; bind a variable to a fast-alist created by binding every element of term to t,
; with the final name name.  then run form and free var.

  `(let ((,var (hons-put-list
                ,term
                t
                ,name)))
     (ansfl ,form ,var)))


(defn hons-put-list (keys values l)

; If there are not enough values, the last atom of values is used for
; the remaining values.  If there are not as many keys as values, the
; extra values are ignored.

; Warnings: The pairs are consed onto l in what might seem to be the
; reverse order.  And redundant pairs are not even consed on to l at
; all.  Unless the old value of (hons-get key l) is nil, in which case
; we do cons, even if the new val is nil.

; So if you need to control the order and/or presence of the added
; pairs, write another function.

  (if (atom keys)
      l
    (let* ((cp          (consp values))
           (val         (if cp (car values) values))
           (next-values (if cp (cdr values) values))
           (old-pair    (hons-get (car keys) l))
           (redundant   (and old-pair (hons-equal val (cdr old-pair))))
           (next-l      (if redundant l (hons-acons (car keys) val l))))
      (hons-put-list (cdr keys) next-values next-l))))



(defund alist-keys (x)
  (declare (xargs :guard t))
  (cond ((atom x)
         nil)
        ((atom (car x))
         (alist-keys (cdr x)))
        (t
         (cons (caar x) (alist-keys (cdr x))))))

(defund alist-vals (x)
  (declare (xargs :guard t))
  (cond ((atom x)
         nil)
        ((atom (car x))
         (alist-vals (cdr x)))
        (t
         (cons (cdar x) (alist-vals (cdr x))))))








; LIST OPERATIONS USING HONS -----------------------------------------------

(defn hons-binary-append (x y)
  (mbe :logic (append x y)
       :exec (if (atom x)
                 y
               (hons (car x)
                     (hons-binary-append (cdr x) y)))))

(defmacro hons-append (x y &rest rst)
  "APPEND using HONS instead of CONS"
  (xxxjoin 'hons-binary-append (cons x (cons y rst))))

(defn hons-revappend (x y)
  "REVAPPEND using HONS instead of CONS"
  (mbe :logic (revappend x y)
       :exec (if (atom x)
                 y
               (hons-revappend (cdr x) (hons (car x) y)))))

(defn hons-reverse (x)
  "REVERSE using HONS instead of CONS"
  (mbe :logic (reverse x)
       :exec (if (stringp x)
                 (reverse x)
               (hons-revappend x nil))))

(defmacro hons-list (&rest x)
  "(LIST ...) using HONS instead of CONS"
  (if (atom x)
      nil
    (list 'hons (car x) (cons 'hons-list (cdr x)))))

(defmacro hons-list* (&rest x)
  "(LIST* ...) using HONS instead of CONS"
  (cond ((atom x)
         x)
        ((atom (cdr x))
         (car x))
        (t
         (list 'hons (car x) (cons 'hons-list* (cdr x))))))

(defn hons-make-list-acc (n val ac)
  ":Doc-Section Hons-and-Memoization

  ~c[(HONS-MAKE-LIST-ACC n obj acc)] honses obj onto acc N times.
  Equal to (hons-append (make-list n :initial-element n) e).~/~/~/"

  (mbe :logic (make-list-ac n val ac)
       :exec (if (not (posp n))
                 ac
               (hons-make-list-acc (1- n) val (hons val ac)))))

(defmacro hons-make-list (size &key initial-element)
  ":Doc-Section Hons-and-Memoization
  Like ~ilc[make-list], but produces honses.~/~/~/"

  `(hons-make-list-acc ,size ,initial-element nil))




; LIST OPERATIONS USING HONS-EQUAL -----------------------------------------

(defn hons-member-equal (x y)
  "MEMBER-EQUAL using HONS-EQUAL for each equality check"

; [Jared]: BOZO this is exactly the same as gentle-member-equal.  Why duplicate
; it?  Well, maybe gentle-member-equal should actually be changed to use equal,
; and this function should be left alone.

  (mbe :logic (member-equal x y)
       :exec (cond ((atom y) nil)
                   ((hons-equal x (car y)) y)
                   (t (hons-member-equal x (cdr y))))))




; FAST DUPLICATE CHECKING AND REMOVAL --------------------------------------

(defn hons-dups-p1 (l tab)
  "Basic duplicates check; table is a fast alist that associates already-seen
   elements with t."
  (cond ((atom l)
         (ansfl nil tab))
        ((hons-get (car l) tab)
         (ansfl l tab))
        (t
         (hons-dups-p1 (cdr l)
                       (hons-acons (car l) t tab)))))

(encapsulate nil
  (local (defthm hons-assoc-equal-hons-put-list-t
           (iff (hons-assoc-equal x (hons-put-list y t rest))
                (or (hons-assoc-equal x rest)
                    (member x y)))
           :hints (("goal" :induct (hons-put-list y t rest)))))
  (defthm hons-assoc-equal-hons-put-list
    (implies (atom a)
             (iff (hons-assoc-equal x (hons-put-list y t a))
                  (member x y)))))


(defn hons-dups-p (l)

; If L has no duplicate members, then (HONS-DUPS-P L) is NIL.  If L
; has equal members, then (HONS-DUPS-P l) returns the second tail of L
; whose CAR is the first member of L that occurs twice in L.

; [Jared]: BOZO stylistically, would it be better to free the table in this
; function, rather than in hons-dups-p1?

  (hons-dups-p1 l '*hons-dups-p*))

(local (in-theory (enable alist-keys)))
(local (defthm member-alist-keys
         (iff (member x (alist-keys y))
              (hons-assoc-equal x y))))

(encapsulate
  nil


  (local (defthm intersectp-cons-second
           (implies (intersectp x y)
                    (intersectp x (cons z y)))))

  (local (defthm intersectp-cons-second-2
           (implies (not (intersectp x y))
                    (iff (intersectp x (cons z y))
                         (member z x)))))

  (local (defthm intersectp-cons-member
           (implies (member z x)
                    (intersectp x (cons z y)))))

  (local (defthm hons-dups-p1-no-duplicatesp
           (iff (hons-dups-p1 x tab)
                (or (not (no-duplicatesp x))
                    (intersectp x (alist-keys tab))))
           :hints(("Goal" :induct (hons-dups-p1 x tab)))))

  (defthm hons-dups-p-no-duplicatesp
    (iff (hons-dups-p x)
         (not (no-duplicatesp x)))))


(local (in-theory (disable hons-dups-p)))

(defun fast-no-duplicatesp (x)
  (declare (xargs :guard (eqlable-listp x)))
  (mbe :logic (no-duplicatesp-equal x)
       :exec (if (< (length x) 400)
                 (no-duplicatesp x)
               (not (hons-dups-p x)))))

(defun fast-no-duplicatesp-equal (x)
  (declare (xargs :guard (true-listp x)))
  (mbe :logic (no-duplicatesp-equal x)
       :exec (if (< (length x) 400)
                 (no-duplicatesp-equal x)
               (not (hons-dups-p x)))))

(defun fast-no-duplicatesp-eq (x)
  (declare (xargs :guard (symbol-listp x)))
  (mbe :logic (no-duplicatesp-equal x)
       :exec (if (< (length x) 400)
                 (no-duplicatesp-eq x)
               (not (hons-dups-p x)))))





(defn hons-duplicates1 (l tab)
  (cond ((atom l) (ansfl nil tab))
        ((hons-get (car l) tab)
         (cons (car l) (hons-duplicates1 (cdr l) tab)))
        (t (hons-duplicates1 (cdr l) (hons-acons (car l) t tab)))))

(defn hons-duplicates (l)
  (hons-duplicates1 l nil))




; SUBLIS WITH FAST ALISTS AND MEMOIZATION ----------------------------------

(defun hons-sublis-aux (fal x)
  (declare (xargs :guard t))
  (if (atom x)
      (let ((pair (hons-get x fal)))
        (if pair (cdr pair) x))
    (cons (hons-sublis-aux fal (car x))
          (hons-sublis-aux fal (cdr x)))))

(encapsulate
 ()
 (local (defthm lemma
          (implies (alistp x)
                   (equal (hons-assoc-equal a x)
                          (assoc a x)))
          :hints(("Goal" :induct (len x)))))

 (defthm hons-sublis-aux-removal
   (implies (alistp fal)
            (equal (hons-sublis-aux fal x)
                   (sublis fal x)))))

(make-event
 (if (hons-enabledp state)
     '(memoize 'hons-sublis-aux :condition '(consp x))
   '(value-triple :skipping-memoization)))

(defun hons-sublis (fal x)

  ":Doc-Section Hons-and-Memoization
   Memoized version of SUBLIS which uses fast-alists.~/~/

   ~c[(hons-sublis fal x)] is like ~il[sublis], but may be faster in two
   ways.

   1. It uses ~il[hons-get] instead of ~il[assoc], which may provide a speedup
   when the alist in question is very long.  Note that for good performance, the
   fast-alist argument, ~c[fal], must be a valid fast-alist.

   2. It uses a memoized auxiliary function, which may provide a speedup when
   the tree argument, ~c[x], contains large, shared structures.
   ~/"

  (declare (xargs :guard t))
  (let ((ret (hons-sublis-aux fal x)))
    (prog2$
     (clear-memoize-table 'hons-sublis-aux)
     ret)))

(defthm hons-sublis-removal
  (implies (alistp fal)
           (equal (hons-sublis fal x)
                  (sublis fal x))))




; SET OPERATIONS USING HONS ------------------------------------------------

; Some "fast" operations for "set" intersection, union, and set-diff
; intended for use on lists of ACL2 objects without duplications.

(defconst *magic-number-for-hashing*

  18

  ":Doc-Section Hons-and-Memoization

  Assoc is sometimes faster than gethash.~/

  Lisp folklore says it is faster to use ASSOC than GETHASH on a list
  if the list has length 18 or less.~/~/")

(defun worth-hashing1 (l n)
  (declare (type (integer 0 18) n)
           (xargs :guard t))
  (cond ((eql n 0) t)
        ((atom l) nil)
        (t (worth-hashing1 (cdr l) (the (integer 0 18)
                                     ;; 18 is a *magic-number*
                                     (1- n))))))

(defn worth-hashing (l)
  (worth-hashing1 l *magic-number-for-hashing*))

; [Jared] BOZO it would be nice to prove these equivalent to simple set
; operations with no fast alist stuff.

(defn hons-int1 (l1 al2)
  (cond ((atom l1)
         nil)
        ((hons-get (car l1) al2)
         (cons (car l1) (hons-int1 (cdr l1) al2)))
        (t
         (hons-int1 (cdr l1) al2))))

(defn hons-intersection2 (l1 l2)
  (cond ((atom l1)
         nil)
        ((hons-member-equal (car l1) l2)
         (cons (car l1) (hons-intersection2 (cdr l1) l2)))
        (t
         (hons-intersection2 (cdr l1) l2))))

(defn hons-intersection (l1 l2)  ; preserves order of members in l1
  (cond ((worth-hashing l2)
         (with-fast-list fl2 l2 '*hons-intersection-alist*
                         (hons-int1 l1 fl2)))
        (t
         (hons-intersection2 l1 l2))))

(encapsulate
  nil
  (local
   (defthm hons-int1-is-intersection-equal
     (implies (atom atom)
              (equal (hons-int1 x (hons-put-list y t atom))
                     (intersection-equal x y)))
     :hints(("Goal" :in-theory (enable intersection-equal)))))

  (local
   (defthm hons-intersection2-is-intersection-equal
     (equal (hons-intersection2 x y)
            (intersection-equal x y))
     :hints(("Goal" :in-theory (enable intersection-equal)))))

  (defthm hons-intersection-is-intersection-equal
    (equal (hons-intersection a b)
           (intersection-equal a b))))


(defn hons-intersect-p1 (l1 al2)
  (cond ((atom l1) 
         nil)
        ((hons-get (car l1) al2)
         t)
        (t
         (hons-intersect-p1 (cdr l1) al2))))

(defn hons-intersect-p2 (l1 l2)
  (cond ((atom l1) nil)
        ((hons-member-equal (car l1) l2)
         t)
        (t
         (hons-intersect-p2 (cdr l1) l2))))

(defn hons-intersect-p (l1 l2) ; returns T or NIL
  (cond ((and (worth-hashing l1)
              (worth-hashing l2))
         (with-fast-list fl2 l2 '*hons-intersect-p-alist*
                         (hons-intersect-p1 l1 fl2)))
        (t
         (hons-intersect-p2 l1 l2))))

(encapsulate
  nil
  (local
   (defthm hons-intersect-p1-is-intersectp
     (implies (atom atom)
              (equal (hons-intersect-p1 x (hons-put-list y t atom))
                     (intersectp x y)))
     :hints(("Goal" :in-theory (enable intersectp)))))

  (local
   (defthm hons-intersect-p2-is-intersectp
     (equal (hons-intersect-p2 x y)
            (intersectp x y))
     :hints(("Goal" :in-theory (enable intersectp)))))

  (defthm hons-intersect-p-is-intersectp
    (equal (hons-intersect-p a b)
           (intersectp a b))))


(defn hons-sd1 (l1 al2)
  (cond ((atom l1) nil)
        ((hons-get (car l1) al2)
         (hons-sd1 (cdr l1) al2))
        (t (cons (car l1) (hons-sd1 (cdr l1) al2)))))

(defn hons-set-diff2 (l1 l2)
  (cond ((atom l1) nil)
        ((hons-member-equal (car l1) l2)
         (hons-set-diff2 (cdr l1) l2))
        (t (cons (car l1) (hons-set-diff2 (cdr l1) l2)))))

(defn hons-set-diff (l1 l2) ; preserves order of members in l1
  (cond ((worth-hashing l2)
         (with-fast-list fl2 l2 '*hons-set-diff-alist*
                         (hons-sd1 l1 fl2)))
        (t (hons-set-diff2 l1 l2))))

(encapsulate
  nil
  (local
   (defthm hons-sd1-is-set-difference$
     (implies (atom atom)
              (equal (hons-sd1 x (hons-put-list y t atom))
                     (set-difference$ x y)))
     :hints(("Goal" :in-theory (enable set-difference$)))))

  (local
   (defthm hons-set-diff2-is-set-difference$
     (equal (hons-set-diff2 x y)
            (set-difference$ x y))
     :hints(("Goal" :in-theory (enable set-difference$)))))

  (defthm hons-set-diff-is-set-difference$
    (equal (hons-set-diff a b)
           (set-difference$ a b))))


(defn hons-union1 (l1 al2 acc)
  (cond ((atom l1) acc)
        ((hons-get (car l1) al2)
         (hons-union1 (cdr l1) al2 acc))
        (t (hons-union1 (cdr l1) al2 (cons (car l1) acc)))))

(defn hons-union2 (l1 l2 acc)
  (cond ((atom l1) acc)
        ((hons-member-equal (car l1) l2)
         (hons-union2 (cdr l1) l2 acc))
        (t (hons-union2 (cdr l1) l2 (cons (car l1) acc)))))

;; variant like hons-sd1, hons-int1 where fl2 doubles as the accumulator,
;; and therefore does not collect duplicates; useful for unioning together many lists
(defn hons-un1 (l1 fl2)
  (cond ((atom l1) fl2)
        ((hons-get (car l1) fl2)
         (hons-un1 (cdr l1) fl2))
        (t (hons-un1 (cdr l1) (hons-acons (car l1) t fl2)))))

(defn hons-union (l1 l2)

; HONS-UNION may run faster if L1 and L2 are lists of atoms or honsps,
; since HONS-MEMBER-EQUAL and HONS-GET may be used.

; To prove someday:
; (defthm hons-union-thm
;  (equal (gentle-member x (hons-union l1 l2))
;         (or (gentle-member x l1)
;             (gentle-member x l2))))

  (cond ((atom l1) l2)
        ((atom l2) l1)
        ((atom (cdr l1))
         (if (hons-member-equal (car l1) l2)
             l2
           (cons (car l1) l2)))
        ((atom (cdr l2))
         (if (hons-member-equal (car l2) l1)
             l1
           (cons (car l2) l1)))
        (t
         ;; [Jared]: calling len on both lists seems inefficient; we could
         ;; write a cdr-both style function that determines which is longer

         ;; BOZO This is a very messy optimization, and the benchmarks below
         ;; suggest that it might be backward.  What is our goal?  If we want
         ;; to produce the shortest list containing the union of our elements,
         ;; then we're going about it all wrong in any case.  If we just want
         ;; any list containing the union, and we want to get it as fast as
         ;; possible, we're better off putting only the shorter list into the
         ;; fal; here we're using the longer list instead.
         (let ((len1 (len l1))
               (len2 (len l2)))
           (cond ((and (>= len2 len1)
                       (>= len1 *magic-number-for-hashing*))
                  (with-fast-list
                   fl2 l2 '*hons-union*
                   (hons-union1 l1 fl2 l2)))
                 ((and (>= len1 len2)
                       (>= len2 *magic-number-for-hashing*))
                  (with-fast-list
                   fl1 l1 '*hons-union*
                   (hons-union1 l2 fl1 l1)))
                 (t (hons-union2 l1 l2 l2)))))))

;; (let ((l1 (loop for i from 1 to 10 collect i))
;;       (l2 (loop for i from 1 to 1000 collect i)))
;;   (progn
;;     (time$ (loop for i from 1 to 1000 collect
;;                  (with-fast-list fl2 l2 '*hons-union*
;;                    (hons-union1 l1 fl2 l2))))
;;     nil)) ;; 0.43 seconds, 102 MB

;; (let ((l1 (loop for i from 1 to 10 collect i))
;;       (l2 (loop for i from 1 to 1000 collect i)))
;;   (progn
;;     (time$ (loop for i from 1 to 1000 collect
;;                  (with-fast-list fl1 l1 '*hons-union*
;;                    (hons-union1 l2 fl1 l1))))
;;     nil)) ;; 0.10 seconds, 18 MB (!!)

;; (let ((l1 (loop for i from 1 to 10 collect i))
;;       (l2 (loop for i from 1 to 1000 collect i)))
;;   (progn
;;     (time$ (loop for i from 1 to 1000 collect
;;                  (with-fast-list fl1 l1 '*hons-union*
;;                    (hons-un1 l2 fl1))))
;;     nil)) ;; 0.42 seconds, 101 MB

;; (let ((l1 (loop for i from 1 to 10 collect i))
;;       (l2 (loop for i from 1 to 1000 collect i)))
;;   (progn
;;     (time$ (loop for i from 1 to 1000 collect
;;                  (with-fast-list fl2 l2 '*hons-union*
;;                    (hons-un1 l1 fl2))))
;;     nil)) ;; 0.43 seconds, 102 MB

;; (let ((l1 (loop for i from 1 to 10 collect i))
;;       (l2 (loop for i from 1 to 20 nconc
;;                 (loop for i from 1 to 50 collect i))))
;;   (progn
;;     (time$ (loop for i from 1 to 1000 collect
;;                  (with-fast-list fl2 l2 '*hons-union*
;;                    (hons-union1 l1 fl2 l2))))
;;     nil)) ;; 0.11 seconds, 3.3 MB

;; (let ((l1 (loop for i from 1 to 10 collect i))
;;       (l2 (loop for i from 1 to 20 nconc
;;                 (loop for i from 1 to 50 collect i))))
;;   (progn
;;     (time$ (loop for i from 1 to 1000 collect
;;                  (with-fast-list fl1 l1 '*hons-union*
;;                    (hons-union1 l2 fl1 l1))))
;;     nil)) ;; 0.10 seconds, 15 MB


;; Note that because hons-union1 and 2 accumulate the first arg onto the second
;; arg in reverse order, it's not the same as union$.

(encapsulate nil
  (local (defthm hons-union1-revappend-set-difference
           (equal (hons-union1 x tab y)
                  (revappend (set-difference$ x (alist-keys tab)) y))))

  (local (defthm hons-union2-revappend-set-difference
           (equal (hons-union2 x l y)
                  (revappend (set-difference$ x l) y))))

  ;; bozo prove something about hons-union, but maybe fix it first
  )



(defn hons-union-list (l)
  (if (atom l)
      nil
    (hons-union (car l)
                (hons-union-list (cdr l)))))


(defn hons-subset1 (l al)
  (or (atom l)
      (and (hons-get (car l) al)
           (hons-subset1 (cdr l) al))))

(defn hons-subset2 (l1 l2)
  (cond ((atom l1) t)
        ((hons-member-equal (car l1) l2)
         (hons-subset2 (cdr l1) l2))))

(defn hons-subset (l1 l2)
  (cond ((worth-hashing l2)
         (with-fast-list fl2 l2 '*hons-subset-alist*
                         (hons-subset1 l1 fl2)))
        (t (hons-subset2 l1 l2))))

(defn hons-set-equal (l1 l2)
  (and (hons-subset l1 l2)
       (hons-subset l2 l1)))




; DEFHONST -----------------------------------------------------------------

;; [Jared]: bozo new hons means defhonst changes...

;; Defhonst is like defconst.

;; The record for all defhonst values is kept in the ACL2 global
;; 'defhonst.  To flush all defhonst records manually, one may:
;; (f-put-global 'defhonst nil state).


; [Jared]: if defhonst is really like defconst, then why have it?  What's the
; difference?  Why is it desirable?  We should have some documentation for it.
; It seems there are a couple of consequences of using defhonst, e.g.,
; persistent hons table, evisceration, etc.


;; [Jared]: removed this, but not sure what it was for.

;; (defmacro update-defhonst (f r)
;;   `(let ((f ,f) (r ,r))
;;      (pprogn
;;       (f-put-global
;;        'defhonst
;;        (hons (hons (cadr r)
;;                    (concatenate 'string "," (symbol-name f)))
;;              (if (boundp-global 'defhonst state)
;;                  (get-global 'defhonst state)
;;                nil))
;;        state)
;;       (value f))))



(defmacro defhonst (name form &key (evisc 'nil eviscp) check doc)

; From Matt Mon Sep 29 09:53:49 CDT 2008

  `(with-output
    :off summary
    (progn
      ;; [Jared]: switched to hons-copy-persistent
      (defconst ,name (hons-copy-persistent ,form) ,doc)
      (table evisc-table
             ,name
             ,(if eviscp
                  evisc
                (let ((str (symbol-name name)))
                  (if (may-need-slashes str)
                      (concatenate 'string "#.|" str "|")
                    (concatenate 'string "#." str)))))

;; [Jared]: removed the table event
;;       (table persistent-hons-table
;;              (let ((x ,name))
;;                (if (or (consp x) (stringp x))

;; ; honsp-check without check

;;                    x
;;                  nil))
;;              t)
      ,@(and check
             `((assert-event ,check)))
      (value-triple ',name))))




; UNRELATED TO HONS --------------------------------------------------------

; [Jared]: BOZO why is this stuff in hons-help.lisp?  What does any of this
; have to do with hons?  Can we move this elsewhere?

; [Jared]: moved plev stuff to tools/plev.lisp


(defstub fail (x y) t :doc

; [Jared]: find a better place for this?

  ":Doc-Section Miscellaneous
     There are no axioms about FAIL except the equality axioms.~/~/

   One can prove:

          (thm (implies (and (equal x1 x2) (equal y1 y2))
                        (equal (fail x1 y1) (fail x2 y2))))

   However, if FAIL is called at run-time, an error occurs.

   FAIL can perhaps be understood in analogy with the notion of a
   'resource error'.  Though one can prove:

      (thm (implies (posp n) (consp (make-list n))))

   what will happen if one invokes (make-list (expt 2 2000))?  It is
   hard to predict, but eventually, something like an error will
   occur.~/")






; STUFF I REMOVED ----------------------------------------------------------


; [Jared]: Removing this because the MBE I added is better.

; (defthm symbol-listp-hons-copy-list-r
;   (implies (symbol-listp x)
;            (symbol-listp (hons-copy-list-r x))))


; [Jared]: Removing hons-len1 and hons-len.  New ACL2 versions appear to
; optimize len anyway, and make it tail recursive.  And, at any rate, it
; doesn't appear that this is being used.

;; (defun hons-len1 (x acc)
;;   (declare (xargs :guard (and (integerp acc) (<= 0 acc))))
;;   (mbe :logic (+ (len x) acc)
;;        :exec (if (atom x)
;;                  acc
;;                (hons-len1 (cdr x) (+ 1 acc)))))
;;
;; (defn hons-len (x)
;;   (mbe :logic (len x)
;;        :exec (hons-len1 x 0)))
;;
;; (defthm natp-hons-len
;;   (implies (integerp n)
;;            (and (integerp (hons-len1 x n))
;;                 (>= (hons-len1 x n) n))))




; [Jared]: I'm removing this.  It may actually be kind of a nice idea, but this
; function is clearly defective.  For instance,
;
; (alist-subsetp
;  (hons-acons 'a 3 (hons-acons 'b 2 nil))
;  (hons-acons 'b 2 (hons-acons 'a 1 nil)))
;
; Returns T.  The problem is that we should be double-car'ing el, if we're
; going to pass in al1 as its value.  Also, I think we should not name this
; function alist-equal, something like fast-alist-equal would be more
; appropriate.

;; (defn alist-subsetp1 (l1 l2 el)
;;   (cond ((atom el) t)
;;         (t (and (equal (hons-get (car el) l1)
;;                        (hons-get (car el) l2))
;;                 (alist-subsetp1 l1 l2 (cdr el))))))
;;
;; (defn alist-subsetp (al1 al2)
;;   (alist-subsetp1 al1 al2 al1))
;;
;; (defn alist-equal (al1 al2)
;;   ":Doc-Section Hons-and-Memoization
;;
;;   (ALIST-EQUAL al1 al2) returns T or NIL according to whether for all
;;   x, (equal (hons-get x AL1) (hons-get x AL2)).~/
;;
;;   ALIST-EQUAL sometimes runs rather fast on fast alists. ~/~/"
;;
;;   (and (equal (fast-alist-len al1)
;;               (fast-alist-len al2))
;;        (alist-subsetp al1 al2)))



;; [Jared]: I think these are not used, and would prefer to get rid of them.

;; ; The functions HONS-GETPROP and HONS-PUTPROP support fast property
;; ; lists for any type of keys, not just symbols.  With HONS-PUTPROP you
;; ; can cause X to have the value VAL under the key Y, and with
;; ; HONS-GETPROP you can later ask for the value of X under the key Y
;; ; and get back VAL.  As usual in Lisp, there is potential confusion
;; ; over whether NIL is a value of an indication of no value.

;; ; [Jared]: BOZO are these useful?  Can we get rid of them?

;; (defn hons-getprop (x y al)
;;   (cdr (hons-get (hons x y) al)))

;; (defn hons-putprop (x y val al)
;;   (hons-acons (hons x y) val al))

;; (defthm hons-getprop-of-hons-putprop
;;   (equal (hons-getprop x1 y1 (hons-putprop x2 y2 val al))
;; 	 (if (and (equal x1 x2)
;; 		  (equal y1 y2))
;; 	     val
;; 	   (hons-getprop x1 y1 al))))




;; [Jared]: Removing this; it seems like you usually don't want to have the
;; spine honsed anyway.
;;
;; (defn make-fal! (al name)
;;   (cond ((atom al)
;;          name)
;;         ((atom (car al))
;;          (make-fal (cdr al) name))
;;         (t
;;          (hons-acons! (caar al)
;;                       (cdar al)
;;                       (make-fal (cdr al) name)))))



;; (defn make-list-of-numbers (n)

;; ; [Jared]: Seems like fluff, why include it here?  Why use hons?  If there's a
;; ; good reason, then why not hons in the base case?  Could do better to return
;; ; (list 0)?  I moved it to hons-tests.lisp

;;   (declare (xargs :guard (natp n)))
;;   (if (zp n)
;;       (list n)
;;     (hons n (make-list-of-numbers (1- n)))))





;; [Jared]: removing the mergesort since I don't think it's really used.

;; (defn odds1 (x ans)
;;   (cond ((atom x) ans)
;;         ((atom (cdr x)) (cons (car x) ans))
;;         (t (odds1 (cddr x) (cons (car x) ans)))))

;; (defn evens1 (x ans)
;;   (cond ((atom x) ans)
;;         ((atom (cdr x)) ans)
;;         (t (evens1 (cddr x) (cons (cadr x) ans)))))

;; (defthm odds1-length
;;   (implies (and (not (atom x))
;;                 (not (atom (cdr x))))
;;            (< (len (odds1 x ans))
;;               (+ (len x)
;;                  (len ans))))
;;   :rule-classes :linear)

;; (defthm evens1-length
;;   (implies (and (not (atom x))
;;                 (not (atom (cdr x))))
;;            (< (len (evens1 x ans))
;;               (+ (len x)
;;                  (len ans))))
;;   :rule-classes :linear)

;; (defun ms-merge (l1 l2 h)

;; ; If (1) both L1 and and L2 are alists,
;; ;    (2) H is an alist that maps the car of each member of L1 and L2
;; ;        to an ACL2 ordinal, cf. O-P, and
;; ;    (3) both L1 and L2 are weakly O-P increasing with respect
;; ;        to the H values of their cars,
;; ; then (MS-MERGE L1 L2 H) is a permutation of (APPEND L1 L2)
;; ; that is weakly increasing with respect to the H value
;; ; of the cars of its members.

;;   (declare (xargs :guard t
;;                   :measure (+ (len l1) (len l2))))
;;   (cond ((atom l1) l2)
;;         ((atom l2) l1)
;;         ((atom (car l1)) nil) ; to help with guards
;;         ((atom (car l2)) nil)
;;         (t (let ((m1 (cdr (hons-get (caar l1) h)))
;;                  (m2 (cdr (hons-get (caar l2) h))))
;;              (cond ((and (o-p m1)
;;                          (o-p m2)
;;                          (o< m1 m2))
;;                     (cons (car l1) (ms-merge (cdr l1) l2 h)))
;;                    (t (cons (car l2) (ms-merge l1 (cdr l2) h))))))))

;; (defun merge-sort (a h)

;; ; If both A and H are alists and H maps the car of each member of A to
;; ;    an ACL2 ordinal, cf. O-P,
;; ; then (MERGE-SORT A H) is a permutation of A whose cars are
;; ;    weakly O-<-increasing under H.

;; ; For efficiency, H should be a fast alist, but there is no reason for
;; ; A to be.

;;   (declare (xargs :guard t
;;                   :verify-guards nil
;;                   :measure (len a)))
;;   (if (or (atom a) (atom (cdr a))) a
;;     (ms-merge (merge-sort (odds1 a nil) h)
;;               (merge-sort (evens1 a nil) h)
;;               h)))

;; (verify-guards merge-sort)

;; (defn hons-merge-sort (a h)
;; ; BOZO Jared thinks this is never used.
;;   (hons-copy (merge-sort a h)))




;; (defn hons-take (n l)
;;   ":Doc-Section Hons-and-Memoization

;;  First n elements of l~/

;;  (HONS-TAKE n l) returns a honsed list of the first N elements of L.
;;  To always return a list of n elements, HONS-TAKE fills at the end
;;  with NIL, if necessary.~/~/"

;; ; [Jared]: Changed this to use hons-make-list.  The current definition agrees
;; ; with gentle-take, but not with take.  BOZO is there a good reason to have
;; ; this nil behavior?  It seems nicer to make it agree with take instead.

;;  (cond ((not (posp n))
;;         nil)
;;        ((atom l)
;;         (hons-make-list-acc n nil nil))
;;        (t
;;         (hons (car l)
;;               (hons-take (1- n) (cdr l))))))


;; (defn nil-list (n)
;;   (mbe :logic (make-list n :initial-element nil)
;;        :exec (hons-make-list-acc n nil nil)))




;;; [Jared]: hons-copy-r and hons-copy-list-r are not needed in the new hons
;;; system; just use hons-copy instead.

;; (defn hons-copy-r (x)

;; ; [Jared]: I don't understand this comment or why hons-copy-r is
;; ; better than hons-copy.

;; ; This is an "under the hood" remark.  If the system is built with
;; ; *break-honsp* non-NIL, then one will be rudely interrupted whenever
;; ; HONSP returns NIL.  So if you wish to copy a CONS structure into a
;; ; HONS structure, use HONS-COPY-R instead of HONS-COPY.

;;   ;; r stands for recursive
;;   (mbe :logic x
;;        :exec (if (atom x) 
;;                  x
;;                (hons (hons-copy-r (car x))
;;                      (hons-copy-r (cdr x))))))

;; (defn hons-copy-list-r (x)
;;   ;; r stands for recursive
;;   (mbe :logic x
;;        :exec (if (atom x)
;;                  x
;;                (hons (car x)
;;                      (hons-copy-list-r (cdr x))))))



;;; [Jared]: this doesn't seem to be used

;; (defn hons-remove-equal-cons (x y)
;;   "REMOVE-EQUAL using HONS-EQUAL for each equality check, produces CONSES"

;; ; [Jared]: BOZO. It would be really nice to change this to return nil in the
;; ; base case, so that it could be MBE equal to remove-equal, and hence we would
;; ; not be introducing yet another function symbol.

;;   (cond ((atom y) y)
;;         ((hons-equal x (car y))
;;          (hons-remove-equal-cons x (cdr y)))
;;         (t (cons (car y) (hons-remove-equal-cons x (cdr y))))))





;; [Jared and Sol] deleting this because it's never used and we have a new fancy
;; thing called with-fast-alist that is better

;; (defmacro with-fast-alist (var l1 l2 name form)
;;   `(let ((,var (hons-put-list ,l1 ,l2 ,name)))
;;      (ansfl ,form ,var)))