This file is indexed.

/usr/share/acl2-6.5/books/data-structures/array1.lisp is in acl2-books-source 6.5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
; array1.lisp -- a book about one-dimensional arrays
; Copyright (C) 1997  Computational Logic, Inc.

; This book is free software; you can redistribute it and/or modify
; it under the terms of the GNU General Public License as published by
; the Free Software Foundation; either version 2 of the License, or
; (at your option) any later version.

; This book is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
; GNU General Public License for more details.

; You should have received a copy of the GNU General Public License
; along with this book; if not, write to the Free Software
; Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

; Written by:  Bishop Brock
; Computational Logic, Inc.
; 1717 West Sixth Street, Suite 290
; Austin, TX 78703-4776 U.S.A.

;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
;;;
;;;    array1.lisp
;;;
;;;    Characterization of 1-dimensional arrays.
;;;
;;;    This book requires nothing more than the ACL2 boot-strap theory for
;;;    its certification.
;;;    
;;;   
;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
;;;
;;;    Note: This book was originally developed in a version of ACL2 where
;;;    guards were part of the logic. It is technically possible to weaken
;;;    the hypotheses of many of the lemmas, but time has not permitted us to
;;;    do this.

(in-package "ACL2")
(include-book "doc-section")

(deflabel array1
  :doc ":doc-section data-structures
  
  A book of lemmas that characterize 1-dimensional arrays.
  ~/

  Because many of the functions characterized by this book are non-recursive,
  one should always DISABLE the theory ARRAY1-FUNCTIONS after including this
  book, or the lemmas will not be applicable. 
   ~/

  The lemmas exported by this book should completely characterize
  1-dimensional arrays for most purposes.  Given the lemmas exported by this
  book, it should not be necessary to ENABLE any of the 1-dimensional array
  functions except under special circumstances.

  This book defines a function RESET-ARRAY1 that clears an array, effectively
  resetting each element of the array to the default value.  This book also
  includes a macro, DEFARRAY1TYPE, which defines recognizers and supporting
  lemmas for 1-dimensional arrays whose elements are all of a fixed type.~/")

(defdoc array1-lemmas
  ":doc-section array1
  A theory of all ENABLEd rules exported by the \"array1\" book.
  ~/
  Note that in order for these rules to be applicable you will first need to
  DISABLE the theory ARRAY1-FUNCTIONS.  The following rules are found in this
  theory: 
  ~/~/ ")


;;;****************************************************************************
;;;
;;;    These are general lemmas about ALISTs and ALIST functions.  None of
;;;    these lemmas are exported by this book.  Perhaps someday they will
;;;    appear in an ALIST book.   
;;;
;;;****************************************************************************

;;;  EQLABLE-ALISTP

(local
 (defthm eqlable-alistp-implies-alistp
  (implies
   (eqlable-alistp l)
   (alistp l))
  :rule-classes (:rewrite :forward-chaining)))

;;;  ASSOC

(local
 (defthm assoc-properties
  (implies
   (and (eqlable-alistp l)
	(assoc x l))
   (and (consp (assoc x l))
	(equal (car (assoc x l)) x)))))

(local
 (defthm eqlablep-car-assoc
   (implies
    (and (eqlable-alistp l)
	 (assoc x l))
    (eqlablep (car (assoc x l))))))

;;;  ASSOC-EQ

(local
 (defthm assoc-eq-properties
   (implies
    (and (alistp l)
	 (assoc-eq x l))
    (and (consp (assoc-eq x l))
	 (equal (car (assoc-eq x l)) x)))))

;;;  BOUNDED-INTEGER-ALISTP

(local
 (defthm bounded-integer-alistp-eqlable-alistp
  (implies
   (bounded-integer-alistp l n)
   (eqlable-alistp l))
  :rule-classes (:rewrite :forward-chaining)))

(local
 (defthm bounded-integer-alistp-car-assoc-properties
   (implies
    (and (bounded-integer-alistp l n)
	 (assoc i l)
	 (not (equal (car (assoc i l)) :header)))
    (and (integerp (car (assoc i l)))
	 (>= (car (assoc i l)) 0)
	 (< (car (assoc i l)) n)))))


;;;****************************************************************************
;;;
;;;    Local array1 events.
;;;
;;;****************************************************************************

;;;  We prove a :FORWARD-CHAINING lemma for ARRAY1P and a couple of other
;;;  LOCAL lemmas, then disable ARRAY1P.  Note that for external consumption
;;;  we provide a :FORWARD-CHAINING lemma written in terms of HEADER,
;;;  DIMENSIONS, MAXIMUM-VALUE, etc.  DON'T MESS WITH THIS ARRANGEMENT, or
;;;  you'll be very frustrated and very sorry!

(local
 (defthm array1p-forward-local
   (implies
    (array1p name l)
    (and
     (symbolp name)
     (alistp l)
     (keyword-value-listp (cdr (assoc-eq :header l)))
     (true-listp
      (cadr (assoc-keyword :dimensions (cdr (assoc-eq :header l)))))
     (equal
      (length (cadr (assoc-keyword :dimensions (cdr (assoc-eq :header l)))))
      1)
     (integerp
      (car (cadr (assoc-keyword :dimensions (cdr (assoc-eq :header l))))))
     (integerp
      (cadr (assoc-keyword :maximum-length (cdr (assoc-eq :header l)))))
     (< 0
	(car (cadr (assoc-keyword :dimensions (cdr (assoc-eq :header l))))))
     (<= (car (cadr (assoc-keyword :dimensions (cdr (assoc-eq :header l)))))
	 (cadr (assoc-keyword :maximum-length (cdr (assoc-eq :header l)))))
     (<= (cadr (assoc-keyword :maximum-length (cdr (assoc-eq :header l))))
	 *maximum-positive-32-bit-integer*)
     (bounded-integer-alistp
      l
      (car (cadr (assoc-keyword :dimensions (cdr (assoc-eq :header l))))))))
   :rule-classes :forward-chaining))

(local
 (defthm array1p-header-exists
   (implies
    (array1p name l)
    (assoc-eq :header l))))

; ARRAY1P-CONS (in a slightly different format) is part of the
; BOOT-STRAP-THEORY of ACL2.

(local
 (defthm our-array1p-cons
   (implies
    (and (array1p name l)
	 (integerp n)
	 (>= n 0)
	 (< n (car (dimensions name l))))
    (array1p name (cons (cons n x) l)))))

(local (in-theory (disable array1p)))

;;;  Now, we prove everthing we need to know about COMPRESS11, and then use
;;;  these lemmas to characterize COMPRESS1.

(local
 (defthm eqlable-alistp-compress11
   (implies
    (and (array1p name l)
	 (integerp i)
	 (integerp n)
	 (<= i n))
    (eqlable-alistp (compress11 name l i n default)))))

(local
 (defthm bounded-integer-alistp-compress11
   (implies
    (and (array1p name l)
	 (integerp i)
	 (integerp n)
	 (>= i 0)
	 (<= i n))
    (bounded-integer-alistp (compress11 name l i n default) n))))

(local
 (defthm compress11-assoc-property-0
   (implies
    (and (array1p name l)
	 (integerp i)
	 (integerp n)
	 (<= i n)
	 (integerp j)
	 (assoc j l)
	 (assoc j (compress11 name l i n default)))
    (equal (assoc j (compress11 name l i n default))
	   (assoc j l)))))

(local
 (defthm compress11-assoc-property-1
   (implies
    (and (array1p name l)
	 (not (assoc j (compress11 name l i n default))) ;Free vars!
	 (integerp i)
	 (integerp n)
	 (<= i n)
	 (integerp j)
	 (<= i j)
	 (< j n)
	 (assoc j l))
    (equal (cdr (assoc j l))
	   default))))

(local
 (defthm compress11-assoc-property-2
   (implies
    (and (array1p name l)
	 (integerp i)
	 (integerp n)
	 (<= i n)
	 (integerp j)
	 (not (assoc j l)))
    (not (assoc j (compress11 name l i n default))))))

; Start events added by Matt K. for Version 3.1, 7/1/06, to support proof of
; compress1-assoc-property-0 in light of addition of reverse-sorted and
; unsorted ACL2 arrays.

(local
 (defthm assoc-revappend-1
   (implies (not (member key (strip-cars alist1)))
            (equal (assoc key (revappend alist1 alist2))
                   (assoc key alist2)))))

(local
 (defthm assoc-revappend
   (implies (and (force (no-duplicatesp (strip-cars alist1)))
                 (force (alistp alist1)))
            (equal (assoc key (revappend alist1 alist2))
                   (or (assoc key alist1)
                       (assoc key alist2))))))

(local
 (defun ordered-alistp (x)
   (cond
    ((atom x)
     (null x))
    ((atom (cdr x))
     (and (consp (car x))
          (rationalp (caar x))
          (null (cdr x))))
    (t (and (consp (car x))
            (rationalp (caar x))
            (< (caar x) (caadr x))
            (ordered-alistp (cdr x)))))))

(local
 (defthm no-duplicatesp-strip-cars-ordered-alistp-1
   (implies (and (< key (caar x))
                 (ordered-alistp x))
            (not (member key
                         (strip-cars x))))))

(local
 (defthm no-duplicatesp-strip-cars-ordered-alistp
   (implies (ordered-alistp x)
            (no-duplicatesp (strip-cars x)))))

(local
 (defthm consp-assoc-rewrite
   (implies (and key
                 (assoc key alist))
            (consp (assoc key alist)))))

(local
 (defthm car-assoc
   (implies (assoc key alist)
            (equal (car (assoc key alist))
                   key))))

(local
 (defthm <-caar-compress11
   (implies (and (< i j)
                 (consp (compress11 name l j n default)))
            (< i (caar (compress11 name l j n default))))))

(local
 (defthm ordered-alistp-compress11
   (implies (and (integerp i)
                 (integerp n))
            (ordered-alistp (compress11 name l i n default)))))

(local
 (defthm not-member-strip-cars-compress11
   (implies
    (< i j)
    (not (member i
                 (strip-cars (compress11 name l j n default)))))))

(local
 (defthm no-duplicatesp-strip-cars-compress11
   (no-duplicatesp (strip-cars (compress11 name l i n default)))))

; End events added by Matt K. for Version 3.1, 7/1/06, to support proof of
; compress1-assoc-property-0 in light of addition of reverse-sorted and
; unsorted ACL2 arrays.

(local
 (defthm compress1-assoc-property-0
  (implies
   (and (array1p name l)
	(integerp n)
	(>= n 0)
	(< n (car (dimensions name l))) 
	(assoc n l)
	(assoc n (compress1 name l)))
   (equal (cdr (assoc n (compress1 name l)))
	  (cdr (assoc n l))))))

(local
 (defthm compress1-assoc-property-1
   (implies
    (and (array1p name l)
	 (integerp n)
	 (>= n 0)
	 (< n (car (dimensions name l))) 
	 (assoc n l)
	 (not (assoc n (compress1 name l))))
    (equal (cdr (assoc n l))
	   (cadr (assoc-keyword :default (cdr (assoc-eq :header l))))))))

(local
 (defthm compress1-assoc-property-2
   (implies
    (and (array1p name l)
	 (integerp n)
	 (>= n 0)
	 (< n (car (dimensions name l))) 
	 (not (assoc n l)))
    (not (assoc n (compress1 name l))))))

(local
 (defthm header-compress1-crock
   (implies
    (array1p name l)
    (equal (assoc-eq :header (compress1 name l))
	   (assoc-eq :header l)))))


;;;****************************************************************************
;;;
;;;    Exported Events.
;;;
;;;    When new lemmas are added their names must also be added to the theory
;;;    ARRAY1-LEMMAS.
;;;
;;;****************************************************************************

; The following two events were added by Matt K. for Version 3.1, 7/1/06, to
; support proof of compress1-assoc-property-0 in light of addition of
; reverse-sorted and unsorted ACL2 arrays.

(local
 (defthm alistp-revappend
   (implies (alistp x)
            (equal (alistp (revappend x y))
                   (alistp y)))))

(local
 (defthm bounded-integer-alistp-revappend
   (implies (bounded-integer-alistp x n) 
            (equal (bounded-integer-alistp (revappend x y) n)
                   (bounded-integer-alistp y n)))))

(defthm array1p-compress1
  (implies
   (array1p name l)
   (array1p name (compress1 name l)))
  :hints
  (("Goal"
    :in-theory (enable array1p)
    :use array1p-header-exists))
  :doc ":doc-section array1-lemmas
  Rewrite: (ARRAY1P name (COMPRESS1 name l)).
  ~/~/~/")

(defthm array1p-compress1-properties
  (implies
   (array1p name l)
   (and
    (equal (header name (compress1 name l))
	   (header name l))
    (equal (dimensions name (compress1 name l))
	   (dimensions name l))
    (equal (maximum-length name (compress1 name l))
	   (maximum-length name l))
    (equal (default name (compress1 name l))
	   (default name l))))
  :doc ":doc-section array1-lemmas
  Rewrite: 
  (HEADER name (COMPRESS1 name l))         = (HEADER name l).
  (DIMENSIONS name (COMPRESS1 name l))     = (DIMENSIONS name l).
  (MAXIMUM-LENGTH name (COMPRESS1 name l)) = (MAXIMUM-LENGTH name l).
  (DEFAULT name (COMPRESS1 name l))        = (DEFAULT name l).
  ~/~/~/")

;  COMPRESS1 is now fully characterized, so we DISABLE it and start proving
;  the interesting theorems.

(local (in-theory (disable compress1)))

(defthm array1p-aset1
  (implies
   (and (array1p name l)
	(integerp n)
	(>= n 0)
	(< n (car (dimensions name l))))
   (array1p name (aset1 name l n val)))
  :doc ":doc-section array1-lemmas
  Rewrite: (ARRAY1P name (ASET1 name l n val)).
  ~/~/~/")

(defthm array1p-aset1-properties
  (implies
   (and (array1p name l)
	(integerp n)
	(>= n 0)
	(< n (car (dimensions name l))))
   (and
    (equal (header name (aset1 name l n val))
	   (header name l))
    (equal (dimensions name (aset1 name l n val))
	   (dimensions name l))
    (equal (maximum-length name (aset1 name l n val))
	   (maximum-length name l))
    (equal (default name (aset1 name l n val))
	   (default name l))))
  :doc ":doc-section array1-lemmas
  Rewrite: 
  (HEADER name         (ASET1 name l n val))  = (HEADER name l).
  (DIMENSIONS name     (ASET1 name l n val))  = (DIMENSIONS name l).
  (MAXIMUM-LENGTH name (ASET1 name l n val))  = (MAXIMUM-LENGTH name l).
  (DEFAULT name        (ASET1 name l n val))  = (DEFAULT name l).
  ~/~/~/")

(defthm aref1-compress1
  (implies
   (and (array1p name l)
	(integerp n)
	(>= n 0)
	(< n (car (dimensions name l))))
   (equal (aref1 name (compress1 name l) n)
	  (aref1 name l n)))
  :doc ":doc-section array1-lemmas
  Rewrite: (AREF1 name (COMPRESS1 name l) n) = (AREF name l n).
  ~/~/~/")

(defthm array1p-acons-properties
  (implies
   (integerp n)
   (and
    (equal (header name (cons (cons n val) l))
	   (header name l))
    (equal (dimensions name (cons (cons n val) l))
	   (dimensions name l))
    (equal (maximum-length name (cons (cons n val) l))
	   (maximum-length name l))
    (equal (default name (cons (cons n val) l))
	   (default name l))))
  :doc ":doc-section array1-lemmas
  Rewrite:
  (HEADER name         (CONS n val) l) = (HEADER l)        , for integers n. 
  (DIMENSIONS name     (CONS n val) l) = (DIMENSIONS l)    , for integers n. 
  (MAXIMUM-LENGTH name (CONS n val) l) = (MAXIMUM-LENGTH l), for integers n. 
  (DEFAULT name        (CONS n val) l) = (DEFAULT l)       , for integers n. 
  ~/~/~/")

(defthm array1p-consp-header
  (implies
   (array1p name l)
   (consp (header name l)))
  :rule-classes :type-prescription
  :doc ":doc-section array1-lemmas
  Type-Prescription: (CONSP (HEADER name l)).
  ~/~/~/")

(defthm array1p-car-header
  (implies
   (array1p name l)
   (equal (car (header name l))
	  :header))
  :doc ":doc-section array1-lemmas
  Rewrite: (CAR (HEADER name l)) = :HEADER.
  ~/~/~/")

;  These two theorems for the AREF1-ASET1 cases are used to prove a
;  combined result, and then exported DISABLEd.

(defthm aref1-aset1-equal
  (implies
   (and (array1p name l)
	(integerp n)
	(>= n 0)
	(< n (car (dimensions name l))))
   (equal (aref1 name (aset1 name l n val) n)
	  val))
  :doc ":doc-section array1-lemmas
  Rewrite: (AREF1 name (ASET1 name l n val) n) = val.~/
  Note that this rule is exported DISABLEd by default in favor of
  AREF1-ASET1.
  ~/~/")

(defthm aref1-aset1-not-equal
  (implies
   (and (array1p name l)
	(integerp n1)
	(>= n1 0)
	(< n1 (car (dimensions name l)))
	(integerp n2)
	(>= n2 0)
	(< n2 (car (dimensions name l)))
	(not (equal n1 n2)))
   (equal (aref1 name (aset1 name l n1 val) n2)
	  (aref1 name l n2)))
  :doc ":doc-section array1-lemmas
  Rewrite: (AREF1 name (ASET1 name l n1 val) n2) = (AREF1 name l n2),
           when n1 /= n2.~/
  Note that this rule is exported DISABLEd by default in favor of
  AREF1-ASET1.
  ~/~/")

(defthm aref1-aset1
  (implies
   (and (array1p name l)
	(integerp n1)
	(>= n1 0)
	(< n1 (car (dimensions name l)))
	(integerp n2)
	(>= n2 0)
	(< n2 (car (dimensions name l))))
   (equal (aref1 name (aset1 name l n1 val) n2)
	  (if (equal n1 n2)
	      val
	    (aref1 name l n2))))
  :hints
  (("Goal"
    :in-theory (disable aref1 aset1)))
  :doc ":doc-section array1-lemmas
  Rewrite: (AREF1 name (ASET1 name l n1 val) n2) = 
              (IF (EQUAL n1 n2) val (AREF1 name l n2)).
  ~/
  Note that this lemma forces the decision of the equality of n1 and n2.  If
  this causes problems, then DISABLE this lemma and
  (ENABLE AREF1-ASET1-EQUAL AREF1-ASET1-NOT-EQUAL).~/~/")

(in-theory (disable aref1-aset1-equal aref1-aset1-not-equal))

;;;  The final form of the :FORWARD-CHAINING lemma for ARRAY1P.

(defthm array1p-forward-modular
  (implies
   (array1p name l)
   (and (symbolp name)
	(alistp l)
	(keyword-value-listp (cdr (header name l)))
	(true-listp (dimensions name l))
	(equal (length (dimensions name l)) 1)
	(integerp (car (dimensions name l)))
	(integerp (maximum-length name l))
	(< 0 (car (dimensions name l)))
	(<= (car (dimensions name l)) (maximum-length name l))
	(<= (maximum-length name l) *maximum-positive-32-bit-integer*)
	(bounded-integer-alistp l (car (dimensions name l)))))
  :rule-classes :forward-chaining
  :hints
  (("Goal"
    :in-theory (disable length)))
  :doc ":doc-section array1-lemmas
  Forward Chaining: A forward definition of (ARRAY1P name l), in terms of
  HEADER, DIMENSIONS, and MAXIMUM-LENGTH.
  ~/
  Note that ACL2 also defines a lemma ARRAY1P-FORWARD, but that lemma
  is in terms of the expansions of HEADER, DIMENSIONS, and MAXIMUM-LENGTH.
  ~/
  One should normaly DISABLE ARRAY1P in favor of this :FORWARD-CHAINING rule.
  If allowed to open, ARRAY1P can cause severe performance degradation due to
  its large size and many recursive functions.  This lemma is designed to be
  used with the ARRAY1-FUNCTIONS theory DISABLEd.~/")


;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;;;
;;;  RESET-ARRAY1 name l
;;;
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

;  The proofs for RESET-ARRAY1 require a few LOCAL facts.

(local
 (defthm car-header
   (implies
    (array1p name l)
    (equal (car (header name l))
	   :header))))

(local
 (defthm array1p-list-header
   (implies
    (array1p name l)
    (array1p name (list (header name l))))
   :hints
   (("Goal"
     :in-theory (enable array1p)))))

(local
 (defthm header-list-header
  (implies
   (array1p name l)
   (equal (header name (list (header name l)))
	  (header name l)))))

(local
 (defthm dimensions-list-header
  (implies
   (array1p name l)
   (equal (dimensions name (list (header name l)))
	  (dimensions name l)))))

(local
 (defthm default-cons-header
  (implies
   (array1p name l)
   (equal (default name (cons (header name l) x))
	  (default name l)))))

(local
 (defthm symbol-alistp-list-header
  (implies
   (array1p name l)
   (symbol-alistp (list (header name l))))))

(local
 (defthm symbol-alistp-not-assoc-integer
  (implies
   (and (symbol-alistp l)
	(integerp i))
   (not (assoc i l)))))

(local
 (defthm symbol-alistp-not-compress11
  (implies
   (and (symbol-alistp l)
	(integerp i)
	(integerp n))
   (not (compress11 name l i n default)))))

;  HEADER, DEFAULT, and DIMENSIONS are characterized, so we DISABLE them.

(local (in-theory (disable header default dimensions)))

(defun reset-array1 (name l)
  ":doc-section array1
  Clear an 1-dimensional array.
  ~/~/
  The function (RESET-ARRAY1 name l) returns a 1-dimensional array whose
  alist is simply the HEADER of l.  This has the effect of resetting the
  array, i.e., reading the new array at any address will return the default
  value.  The implementation is simply to redefine the array as the HEADER of
  the old array.  Thus all of the HEADER information is carried over to the
  new array. 

  Note that an alternate definition is available as the lemma RESET-ARRAY1*.
  ~/" 

  (declare (xargs :guard (array1p name l)))

  (compress1 name (list (header name l))))

(defthm reset-array1*
  (implies
   (array1p name l)
   (equal (reset-array1 name l)
	  (list (header name l))))
  :hints
  (("Goal"
    :in-theory (enable compress1 compress11)))
  :doc ":doc-section reset-array1
  Rewrite: (RESET-ARRAY1 name l) = (LIST (HEADER name l)).
  ~/~/
  This definition of RESET-ARRAY1 is logically equivalent to the actual
  definition. The actual definition, which includes a COMPRESS1 call, has the
  run-time side-effect of re-installing the new array.  The COMPRESS1 is
  logically redundant, however.

  This lemma is exported DISABLED, however this is the preferred definition
  to use to reason about RESET-ARRAY1. ~/ ")

;  We can now reason with the simple definition RESET-ARRAY1*.

(local (in-theory (disable reset-array1)))

(defthm array1p-reset-array1
  (implies
   (array1p name l)
   (array1p name (reset-array1 name l)))
  :doc ":doc-section array1-lemmas
  Rewrite: (ARRAY1P name (RESET-ARRAY1 name l)).
  ~/~/~/")

(defthm array1p-reset-array1-properties
  (implies
   (array1p name l)
   (and
    (equal (header name (reset-array1 name l))
	   (header name l))
    (equal (dimensions name (reset-array1 name l))
	   (dimensions name l))
    (equal (maximum-length name (reset-array1 name l))
	   (maximum-length name l))
    (equal (default name (reset-array1 name l))
	   (default name l))))
  :doc ":doc-section array1-lemmas
  Rewrite:
  (HEADER name         (RESET-ARRAY1 name l)) = (HEADER name l).
  (DIMENSIONS name     (RESET-ARRAY1 name l)) = (DIMENSIONS name l).
  (MAXIMUM-LENGTH name (RESET-ARRAY1 name l)) = (MAXIMUM-LENGTH name l).
  (DEFAULT name        (RESET-ARRAY1 name l)) = (DEFAULT name l).
  ~/~/~/")

(defthm aref1-reset-array1
  (implies
   (and (array1p name l)
	(integerp index))
   (equal (aref1 name (reset-array1 name l) index)
	  (default name l))))

(in-theory (disable reset-array1*))


;;;****************************************************************************
;;;
;;;  Theories
;;;
;;;****************************************************************************

(deftheory array1-functions 
  '(array1p aset1 aref1 compress1 header dimensions maximum-length
	    default reset-array1)
  :doc ":doc-section array1
  A theory of all functions specific to 1-dimensional arrays.
  ~/
  This theory must be DISABLEd in order for the lemmas exported by the
  \"array1\" book to be applicable.~/~/")

(deftheory array1-lemmas 
  '(array1p-compress1
    array1p-compress1-properties
    array1p-aset1 array1p-aset1-properties
    aref1-compress1 array1p-acons-properties
    array1p-consp-header array1p-car-header
    aref1-aset1 array1p-forward-modular
    array1p-reset-array1 array1p-reset-array1-properties
    aref1-reset-array1))

(deftheory array1-disabled-lemmas
  '(aref1-aset1-equal aref1-aset1-not-equal reset-array1*)
  :doc ":doc-section array1

  A theory of all rules exported DISABLEd by the \"array1\" book.
  ~/ 

  Note that in order for these rules to be applicable you will first need to
  (DISABLE ARRAY1-FUNCTIONS).  Look at the :DOC for each lemma for an
  explanation of why the lemma is exported DISABLEd. The following rules are
  found in this theory:~/~/ 

  :cite aref1-aset1-equal
  :cite aref1-aset1-not-equal
  :cite reset-array1*")


;;;****************************************************************************
;;;
;;;    DEFARRAY1TYPE
;;;
;;;****************************************************************************
	
(defmacro defarray1type
  (recognizer predicate &key
	      size doc
              (aref1-lemma-rule-classes ':REWRITE)
              (aset1-lemma-rule-classes ':REWRITE))

  ":doc-section array1
  
  Characterize 1-dimensional arrays with a fixed element type.
  ~/

  Example form:

  (DEFARRAY1TYPE INTEGERP-ARRAY1P INTEGERP)

  The above example defines a recognizer, INTEGERP-ARRAYP, for 1-dimensional
  arrays whose elements are all INTEGERP.~/

  General form:

  (DEF1ARRAYTYPE recognizer predicate 
                 &key size doc
                      (aref1-lemma-rule-classes ':REWRITE)
                      (aset1-lemma-rule-classes ':REWRITE))

  DEFARRAY1TYPE defines a recognizer for 1-dimensional arrays whose elements
  are all of a single type.  The recognizer argument is a symbol that is used
  as the name of the recognizer.  The predicate argument should be a
  1-argument, unguarded Boolean function that recognizes objects of the
  desired type.  The predicate may either be a symbol (the name of the
  predicate), or a LAMBDA expression.  

  If :SIZE is specified it should be a variable-free term that will evaluate
  to a positive integer.  If specified, then the recognizer will only
  recognize 1-dimensional arrays of the given type and of a fixed size.

  If :DOC is specified it should be a string, and it will be inserted as the
  documentation string in the recognizer.

  DEFARRAY1TYPE defines a recognizer:

  (recognizer NAME L),

  and proves 4 useful theorems about it.  If the :SIZE is not specified then
  the three theorems will be:

  1. (IMPLIES
       (recognizer NAME L)
       (ARRAY1P NAME L))

  2. (IMPLIES
      (AND (recognizer NAME L)
	   (INTEGERP N))
      (predicate (AREF1 NAME L N)))

  3. (IMPLIES
      (AND (recognizer NAME L)
	   (< N (CAR (DIMENSIONS NAME L)))
	   (INTEGERP N)
	   (>= N 0)
	   (predicate VAL))
      (recognizer NAME (ASET1 NAME L N VAL)))

  4. (IMPLIES
      (recognizer NAME l)
      (recognizer NAME (RESET-ARRAY1 name l)))

  If :SIZE is specified then the first and third theorems become:

  1. (IMPLIES
      (recognizer NAME L)
      (AND (ARRAY1P NAME L)
	   (EQUAL (CAR (DIMENSIONS name l))
		  size)))

  3. (IMPLIES
      (AND (recognizer NAME L)
	   (< N size)
	   (INTEGERP N)
	   (>= N 0)
	   (predicate VAL))
      (recognizer NAME (ASET1 NAME L N VAL)))

  The first theorem is stored as both :REWRITE and :FORWARD-CHAINING rules.
  The :RULE-CLASSES of the second and third lemmas default to :REWRITE, but
  are selectable by the user by means of the :AREF1-LEMMA-RULE-CLASSES and
  :ASET1-LEMMA-RULE-CLASSSES arguments to DEFARRAY1TYPE (respectively).  If
  using :RULE-CLASSES other than :REWRITE the user should bear in mind the
  documented restrictions on the applicability of :TYPE-PRESCRIPTION and
  :FORWARD-CHAINING rules.  The fourth rule is always a :REWRITE rule.

  Note the the recognizer is a very strong recognizer that specifies that the
  array alist is a BOUNDED-INTEGER-ALISTP whose elements all satisfy the type
  predicate.  The recognizer also specifies that the default element of the
  array satisfies the predicate as well.

  WARNING: The recognizer is defined in terms of a recursive recoignizer,
  named <recognizer>-FN.  THE RECURSIVE RECOGNIZER SHOULD BE COMPILED BEFORE
  YOU TRY TO EXECUTE IT, OR IT MAY CAUSE A STACK OVERFLOW.  Also note that
  the recognizer will be DISABLEd after execution of this macro.  The user
  must insure that the recognizer remains DISABLEd, otherwise the above
  lemmas will never be applied.

  DEFARRAY1TYPE proves the generated lemmas in a minimal, ENCAPSULATEd theory
  that should guarantee that the proofs always succeed.  If one should
  encounter a case where a proof fails (as opposed to a translation or other
  syntax failure), please notify the author.~/"

  (declare (xargs :guard (and (symbolp recognizer)
                              (pseudo-termp predicate)
			      (implies doc (stringp doc)))))

  ;;  A form for the size, and function and lemma names.

  (let
    ((size-form (if size size '(CAR (DIMENSIONS NAME L))))
     (recognizer-fn
      (intern-in-package-of-symbol
       (coerce (packn1 (list recognizer '-fn)) 'string)
       recognizer))
     (recognizer-lemma
      (intern-in-package-of-symbol
       (coerce (packn1 (list recognizer '-array1p)) 'string) 
       recognizer))
     (aref1-lemma
      (intern-in-package-of-symbol
       (coerce (packn1 (list recognizer '-aref1)) 'string) 
       recognizer))
     (aset1-lemma
      (intern-in-package-of-symbol
       (coerce (packn1 (list recognizer '-aset1)) 'string) 
       recognizer))
     (reset-array1-lemma
      (intern-in-package-of-symbol
       (coerce (packn1 (list recognizer '-reset-array1)) 'string) 
       recognizer)))

    `(ENCAPSULATE ()

       ;;  Set up a theory guaranteed to admit the functions and prove the
       ;;  lemmas.  We assume that the "array1" book has been loaded!
       
       (LOCAL (IN-THEORY (THEORY 'GROUND-ZERO)))
       (LOCAL (IN-THEORY (DISABLE ARRAY1-FUNCTIONS)))
       (LOCAL (IN-THEORY (ENABLE ARRAY1-LEMMAS)))

       ;;  The recursive recognizer.

       (DEFUN ,recognizer-fn (L N)
	 (DECLARE (XARGS :GUARD T))
	 (COND
	  ((ATOM L) (NULL L))
	  (T (AND (CONSP (CAR L))
		  (LET ((KEY (CAAR L))
			(VAL (CDAR L)))
		    (AND (OR (EQ KEY :HEADER)
			     (AND (INTEGERP KEY)
				  (INTEGERP N)
				  (>= KEY 0)
				  (< KEY N)
				  (,predicate VAL)))
			 (,recognizer-fn (CDR L) N)))))))

       ;; The recognizer.

       (DEFUN ,recognizer (NAME L)
	 ,@(if doc (list doc) nil)
	 (DECLARE (XARGS :GUARD T))
	 (AND (ARRAY1P NAME L)
	      (,recognizer-fn L (CAR (DIMENSIONS NAME L)))
	      (,predicate (DEFAULT NAME L))
	      ,@(if size (list `(EQUAL (CAR (DIMENSIONS NAME L)) ,size))
		  NIL)))

       ;;  Lots of crocks.

       (LOCAL
	(DEFTHM DEFARRAY1TYPE-ASSOC-PROPERTIES
	 (IMPLIES
	  (AND (,recognizer-fn L N)
	       (ASSOC I L)
	       (INTEGERP I))
	  (AND (CONSP (ASSOC I L))
	       (INTEGERP (CAR (ASSOC I L)))
	       (>= (CAR (ASSOC I L)) 0)
	       (< (CAR (ASSOC I L)) N)
	       (,predicate (CDR (ASSOC I L)))))))

       (LOCAL
	(DEFTHM DEFARRAY1TYPE-CONS-HEADER
	 (IMPLIES
	  (ARRAY1P NAME L)
	  (EQUAL (,recognizer-fn (CONS (HEADER NAME L) X) MAX)
		 (,recognizer-fn X MAX)))))

       (LOCAL
	(DEFTHM DEFARRAY1TYPE-COMPRESS11
	 (IMPLIES
	  (AND (,recognizer-fn L N)
	       (INTEGERP I)
	       (INTEGERP N))
	  (,recognizer-fn (COMPRESS11 NAME L I N DEFAULT)
			  N))))

       (LOCAL
	(DEFTHM DEFARRAY1TYPE-ASET1
	  (IMPLIES
	   (AND (ARRAY1P NAME L)
		(EQUAL SIZE (CAR (DIMENSIONS NAME L)))
		(,recognizer-fn L SIZE)
		(,predicate (DEFAULT NAME L))
		(INTEGERP N)
		(,predicate VAL)
		(NOT (< N 0))
		(< N SIZE))
	   (,recognizer-fn (ASET1 NAME L N VAL) SIZE))
	  :HINTS
	  (("GOAL"
	    :IN-THEORY (ENABLE COMPRESS1 ASET1)))))

       (LOCAL
	(DEFTHM DEFARRAY1TYPE-RESET-ARRAY1
	  (IMPLIES
	   (ARRAY1P NAME L)
	   (,recognizer-fn (RESET-ARRAY1 NAME L) N))
	  :HINTS
	  (("Goal"
	    :IN-THEORY (ENABLE RESET-ARRAY1*)))))

       ;; The recognizer lemma.

       (DEFTHM ,recognizer-lemma
         (IMPLIES
          (,recognizer NAME L)
          (AND (ARRAY1P NAME L)
	       ,@(if size (list `(EQUAL (CAR (DIMENSIONS NAME L)) ,size))
		   NIL)))
         :RULE-CLASSES (:REWRITE :FORWARD-CHAINING))

       ;; AREF1 returns objects of the proper type.

       (DEFTHM ,aref1-lemma
         (IMPLIES
          (AND (,recognizer NAME L)
               (INTEGERP N))
          (,predicate (AREF1 NAME L N)))
         :RULE-CLASSES ,aref1-lemma-rule-classes
         :HINTS
         (("Goal"
	   :IN-THEORY (ENABLE AREF1))))

       ;;  ASET1 returns arrays of the proper type.

       (DEFTHM ,aset1-lemma
         (IMPLIES
          (AND (,recognizer NAME L)
               (< N ,size-form)
               (INTEGERP N)
               (>= N 0)
               (,predicate VAL))
          (,recognizer NAME (ASET1 NAME L N VAL)))
         :RULE-CLASSES ,aset1-lemma-rule-classes)

       ;;  RESET-ARRAY1 returns arrays of the proper type.

       (defthm ,reset-array1-lemma
	 (implies
	  (,recognizer name l)
	  (,recognizer name (reset-array1 name l))))

       ;;  DISABLE the recognizer.

       (IN-THEORY (DISABLE ,recognizer)))))