/usr/share/acl2-6.5/books/cgen/simple-graph-array.lisp is in acl2-books-source 6.5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 | #|$ACL2s-Preamble$;
(ld ;; Newline to fool ACL2/cert.pl dependency scanner
"portcullis.lsp")
(acl2::begin-book t :ttags :all);$ACL2s-Preamble$|#
;Author: Harsh Raju Chamarthi (harshrc)
(in-package "DEFDATA")
(include-book "utilities")
(include-book "ordinals/lexicographic-ordering-without-arithmetic" :dir :system)
(defun make-n-upto-list (size ans)
;make a list of natural numbers upto (size-1)
;(make-n-upto-list 3 nil) ==> (0 1 2)
(declare (xargs :guard (and (natp size)
(nat-listp ans))))
(if (zp size)
ans
(make-n-upto-list (1- size) (cons (1- size) ans))))
(set-verify-guards-eagerness 0)
(defmacro in (a X)
`(member-equal ,a ,X))
(defun vertex-indexes (vs sym-lst)
;returns a natural number which is associated with
;v in mapping. vs is the original symbol-list
;used to create mapping
(declare (xargs :guard (and (symbol-listp vs)
(symbol-listp sym-lst)
(subsetp vs sym-lst))))
(if (endp vs)
nil
(cons (position (car vs) sym-lst)
(vertex-indexes (cdr vs) sym-lst))))
(defstobj g$
(adj-list-array :type (array T (0))
:initially nil
:resizable t)
:renaming ((adj-list-arrayi ai)
(update-adj-list-arrayi ui))
:doc "Graph represented as an adjacency list array.
Key is vertex-index.
Value is a record with the following fields:
:name - (symbol) name of the vertex
:adj - (nat-list) list of indexes of adjacent vertices
:seen - boolean (bit) indicating wether this vertex has been visited
:cc - (nat) indicating the connected component this vertex belongs to"
:inline t)
(defrec vinfo%
(name adj seen cc)
NIL)
(defmacro make-g$-array-value (name &key adj seen cc)
`(acl2::make vinfo%
:name ,name
:adj ,adj
:seen ,seen
:cc ,(or cc 0)))
(defun symbol-alst->g$1 (alst vs g$)
(declare (xargs :stobjs (g$)
:guard (and (symbol-alistp alst)
(symbol-listp vs)
(g$p g$)
)))
;transforms a symbol-alist graph adjacency list representation
;to an g$ adjacency list representation.
(if (endp alst)
g$
(b* (((cons v adj-vs) (car alst))
((list i) (vertex-indexes (list v) vs))
(adj-is (vertex-indexes adj-vs vs))
(g$ (ui i (make-g$-array-value v :adj adj-is) g$)))
(symbol-alst->g$1 (cdr alst) vs g$))))
(defun init-g$1 (i vs g$)
(declare (xargs :stobjs (g$)
:guard (and (symbol-listp vs)
(g$p g$)
)))
;intializes a g$ to a graph with no edges
(if (endp vs)
g$
(let ((g$ (ui i (make-g$-array-value (car vs)) g$)))
(init-g$1 (1+ i) (cdr vs) g$))))
(defun init-g$ (vs size g$)
";intializes/resets a g$ to a graph with no edges"
(declare (xargs :stobjs (g$)
:guard (and (symbol-listp vs)
(= (len vs) size)
(g$p g$)
)))
(let ((g$ (resize-adj-list-array size g$)))
(init-g$1 0 vs g$)))
#||
(defun reset-g$-aux (l g$)
(if (zp l)
g$
(reset-g$-aux (1- l)
;;index corresponding to l is (1- l) which is the last
;;element initially
(ui (1- l) nil g$))))
(defun reset-g$ (g$)
"reset the information stored for each vertice"
(reset-g$-aux (adj-list-array-length g$) g$))
||#
(defun symbol-alist->g$ (alst g$)
"top-level call to populate g$ with adj-list information obtained
from alst. Assumption: (len alst) = number of vertices in graph and
[strip-cars alst] has distinct vertices"
(declare (xargs :stobjs (g$)
:guard (and (symbol-alistp alst)
(g$p g$))))
(b* ((vs (strip-cars alst))
(size (len alst))
(g$ (init-g$ vs size g$)))
(symbol-alst->g$1 alst
vs ;find position (index)
g$
)))
(set-well-founded-relation acl2::l<)
;Dasgupta Algo
;Vertices are natural numbers.
(defun dfs-visit1 (g$ v n fin flag)
"explore the graph g$ (adj-list array) starting at v.
n is the number of vertices of g$ not seen,
initially it is just the total number of vertices.
fin is the list of finished vertices, with the
(car fin) being the last finished vertice, i.e
the vertice with the maximum post time."
(declare (xargs :stobjs (g$)
:guard (and (g$p g$)
(or (natp v);vertice
(nat-listp v));vertices
(nat-listp fin)
(natp n))
:measure (list (nfix n) (acl2-count v))))
(if (zp n);visited all vertices
(mv g$ fin)
(if (equal 'dfs-visit flag)
;DFS-VISIT
(b* ((v-entry (ai v g$))
(adj-vs (acl2::access vinfo% v-entry :adj))
(g$ (ui v (acl2::change vinfo% v-entry :seen t) g$));update/change seen
((mv g$ fin!)
(dfs-visit1 g$ adj-vs (1- n) fin 'dfs-visit-lst)))
;;update finished vertices
(mv g$ (cons v fin!)))
;DFS-VISIT-LST
(if (endp v);visited all neighbours
(mv g$ fin)
(b* ((v-entry (ai (car v) g$))
;(- (cw "dfs-visit-lst: v-entry for ~x0 is ~x1~%" (car v) v-entry))
)
(if (acl2::access vinfo% v-entry :seen);already seen
(dfs-visit1 g$ (cdr v) n fin 'dfs-visit-lst)
(b* (((mv g$ fin!)
(dfs-visit1 g$ (car v) n fin 'dfs-visit)))
(dfs-visit1 g$ (cdr v) n fin! 'dfs-visit-lst))))))))
(defun dfs-all-vertices (g$ vs n fin cnum)
"Do DFS over all vertices in vs"
(declare (xargs :stobjs (g$)
:guard (and (g$p g$)
(nat-listp vs);vertices
(nat-listp fin)
(natp cnum)
(natp n))))
(if (endp vs);visited all neighbours
(mv g$ fin)
(b* ((v-entry (ai (car vs) g$)))
;(- (cw "dfs-all: v-entry for ~x0 is ~x1~%" (car vs) v-entry)))
(if (acl2::access vinfo% v-entry :seen);already seen
(dfs-all-vertices g$ (cdr vs) n fin cnum)
(b* ((g$ (ui (car vs)
(acl2::change vinfo% v-entry :cc cnum)
g$))
((mv g$ fin!)
(dfs-visit1 g$
;;update current component as part of pre
(car vs) n fin
'dfs-visit)))
(dfs-all-vertices g$ (cdr vs) n fin! (1+ cnum)))))))
(defun dfs1 (g$ vs)
;Depth First Search on adj list array g$ iterating
;over the vertices in vs.
(declare (xargs :stobjs (g$)
:guard (and (nat-listp vs)
(g$p g$))))
(dfs-all-vertices g$ vs (adj-list-array-length g$) nil 0))
;(defdata adjacency-list (map symbol symbol-list))
(defun adjacency-list1p (v)
(if (null v)
t
(if (atom v)
nil
(let ((entry (car v)))
(and (symbolp (car entry))
(symbol-listp (cdr entry))
(no-duplicatesp (cdr entry))
(adjacency-list1p (cdr v)))))))
(defun adjacency-listp (v)
(and (adjacency-list1p v)
(no-duplicatesp (strip-cars v))))
(defun make-empty-adj-list (vars)
(declare (xargs :guard (and (symbol-listp vars)
(no-duplicatesp vars))))
;order important
;order of keys alst created is the same as order of vars
(if (endp vars)
nil
(cons (cons (car vars) nil)
(make-empty-adj-list (cdr vars)))))
;fs means Functionaly dependent vars
;ASSUMPTION: alst has all the variables as keys already
;this function just updates the entries, doesnt insert
;new entries.
(defun union-entry-in-adj-list (var fvars alst)
(declare (xargs :guard (and (adjacency-listp alst)
(true-listp fvars))))
(if (endp alst)
nil
(if (eq var (caar alst))
(cons (cons var (union-equal fvars
(cdar alst)))
(cdr alst))
(cons (car alst)
(union-entry-in-adj-list var fvars (cdr alst))))))
;recurse above fun over list of indices
(defun union-entries-in-adj-list (is fis alst)
(declare (xargs :guard (and (adjacency-listp alst)
(true-listp is)
(true-listp fis))))
(if (endp is)
alst
(union-entries-in-adj-list
(cdr is) fis (union-entry-in-adj-list (car is) fis alst))))
(defun transpose-alst1 (alst ans)
;Scan G at index i and transpose the result corresponding to i in ans
(declare (xargs :guard (and (adjacency-listp alst)
(adjacency-listp ans)
)))
(if (endp alst)
ans
(b* (((cons v vs) (car alst)))
(transpose-alst1 (cdr alst)
(union-entries-in-adj-list vs (list v) ans)))))
(defun transpose-alst (alst)
;Return transpose/reverse of alst
;INVARIANT: Order is very important
(declare (xargs :guard (adjacency-listp alst)))
(transpose-alst1 alst (make-empty-adj-list (strip-cars alst))))
#|
(defthm transpose-idempotent
(implies (adjacency-list1p x)
(equal (transpose-alst (transpose-alst x))
x)))
(defthm transpose-doesnt-change-order
(implies (adjacency-list1p x)
(equal (strip-cars (transpose-alst x))
(strip-cars x))))
|#
(defun scc1 (alst g$)
;Strongly Connected Components of adj list array G,
;alst is the same adj-list, but in form of an alist
(declare (xargs :stobjs (g$)
:guard (and (symbol-alistp alst)
(adjacency-listp alst)
(g$p g$))))
(b* ((r-alst (transpose-alst alst))
(g$ (symbol-alist->g$ r-alst g$))
(N (adj-list-array-length g$))
((mv g$ fin) (dfs1 g$ (make-n-upto-list N nil)))
(g$ (symbol-alist->g$ alst g$))
((mv g$ fin!) (dfs1 g$ fin)))
(mv g$ fin!)))
(defun g$->var-quotient-alst1 (g$ i size ans)
"Given graph g$, where g$[v]=(record name adj-is seenBit ccnum), we will
return, symbol alist, which maps each vertex (name), to its component
number (ccnum). This is used in simple-var-hyp? for finding cycles."
(declare (xargs :stobjs (g$)
:measure (nfix (- size i))
:guard (and (natp i) (natp size)
(<= i size))))
(if (zp (- size i))
ans
(let ((v-entry (ai i g$)))
(g$->var-quotient-alst1 g$ (1+ i) size
(acons (acl2::access vinfo% v-entry :name)
(acl2::access vinfo% v-entry :cc)
ans)))))
(defun g$->var-quotient-alst (g$)
(declare (xargs :stobjs (g$)))
(g$->var-quotient-alst1 g$ 0 (adj-list-array-length g$) nil))
(defun vertex-names (is g$)
(declare (xargs :stobjs (g$)
:guard (nat-listp is)))
(if (endp is)
nil
(cons (acl2::access vinfo% (ai (car is) g$) :name)
(vertex-names (cdr is) g$))))
(defun g$->alst1 (g$ i size ans)
(declare (xargs :stobjs (g$)
:measure (nfix (- size i))
:guard (and (natp i) (natp size)
(<= i size))))
(if (zp (- size i))
ans
(let ((v-entry (ai i g$)))
(g$->alst1 g$ (1+ i) size
(acons (acl2::access vinfo% v-entry :name)
(vertex-names (acl2::access vinfo% v-entry :adj) g$)
ans)))))
(defun g$->symbol-alist (g$)
(declare (xargs :stobjs (g$)))
(g$->alst1 g$ 0 (adj-list-array-length g$) nil))
(defun scc0 (alst g$)
(declare (xargs :stobjs (g$)
:guard (symbol-alistp alst)))
(mv-let (g$ fin)
(scc1 alst g$)
(mv (g$->var-quotient-alst g$)
(vertex-names fin g$)
(g$->symbol-alist g$)
g$)))
(defun fix-adjacency-list (alst)
(declare (xargs :guard (adjacency-listp alst)))
"Fix an adjacency list to have in it keys all the vertices."
(b* ((adj-v-lst-lst (strip-cdrs alst))
(vs (strip-cars alst))
(adj-vs (union-lsts adj-v-lst-lst))
(missing-vs (set-difference-eq adj-vs vs))
(missing-alst (pairlis$ missing-vs nil)))
(append alst missing-alst)))
(defun strongly-connected-components (alst debug-flag)
"Strongly Connected Components of adj list graph alst.
Gives (mv map-ccnum finished-vertex-list) as result, where
map-ccnum, maps each vertex to its component number.
finished-vertex-list gives the list of vertexes in decreasing
post times."
(declare (xargs :guard (adjacency-listp alst)))
(b* ((alst! (fix-adjacency-list alst))
(- (cw? (and (not (equal alst alst!))
debug-flag)
"CEgen/Note: SCC: Got Adjacency list : ~x0 Fixed to : ~x1~%" alst alst!)))
(acl2::with-local-stobj
g$
(mv-let (var-ccnum-alst decreasing-post-times-vertex-lst adj-alst g$)
(scc0 alst! g$)
(mv var-ccnum-alst
decreasing-post-times-vertex-lst
adj-alst)))))
;to check simple soundness (g$->symbol-alist g$) = alst!
(defun approximate-topological-sort (alst debug-flag)
;return vertices following the order ->, but
;since alst might not be a dag, the order
;inside a component might be skewed, but we
;are okay with it, since we choose arbitrarily
;from within a component
(declare (xargs :guard (adjacency-listp alst)))
(b* (((mv & fin-vs &)
(strongly-connected-components alst debug-flag)))
fin-vs))
#|
;example:
;(untrace$ dfs dfs-visit dfs-all-vertices)
(let* ((A '((a b)
(b e c d)
(c f)
(d)
(e b g f)
(f c h)
(g j h )
(h k)
(i g)
(j i)
(k l)
(l j))))
(approximate-topological-sort A))
;ans:(A B E C F D G H K L J I)
;ans by memories graph.lisp: (A B E C F D G H K L J I)
|#
;What correctness theorems can we prove?
|