/usr/share/acl2-6.5/books/cgen/defdata.lisp is in acl2-books-source 6.5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 | #|$ACL2s-Preamble$;
(ld ;; Newline to fool ACL2/cert.pl dependency scanner
"portcullis.lsp")
;;;;Main Author: Peter Dillinger
;;;;Extended by Harsh Raju C
;;;;Data definition Framework (ACL2 Sedan)
;;;;It can be used independently, but is primarily intended
;;;;to support the CGEN/TESTING framework!!
(acl2::begin-book t :ttags ((:hash-stobjs) (:redef+)));$ACL2s-Preamble$|#
(in-package "DEFDATA")
(include-book "utilities")
(include-book "basis")
(include-book "acl2s-parameter")
(include-book "splitnat")
(include-book "switchnat")
;(include-book "graph-tc" :ttags ((:hash-stobjs) (:redef+)));transtive closure and subtype relation
(set-verify-guards-eagerness 2)
;Introduce data definitions conveniently in ACL2
(defdoc acl2::DATA-DEFINITIONS
":Doc-Section DATA-DEFINITIONS
A Data Definition Framework for ACL2~/
The Data Definition Framework supports ground ACL2
~em[types] and any custom ~em[types] introduced by
a user. It also helps the user conveniently construct
enumerated, union, record and list ~em[types].
The framework is integrated with our random testing
framework. It also provides ways to specify subtype
and disjoint relations among the supported ~em[types].~/
The ACL2 value universe is broadly divided into 5 kinds of data
objects. They are Numbers, Characters, Strings, Symbols and Conses
(Ordered Pairs). These disjoint sets serve as types for our purposes;
we shall call them ground data types. Although ACL2 is an ~em[untyped]
logic, it uses type information internally to deduce types.
ACL2 users provide the prover with type information by specifying
type hypotheses on variables in a conjecture.
Note again that ACL2 is syntactically ~em[untyped], but that
doesn't prevent us from having and using a notion of a type.
One ~st[cannot create] new ~em[types] in ACL2, in the sense
that one cannot create a new non-empty set of values that
provably extends the ACL2 value universe. Rather, one
typically partitions the existing universe in potentially
new ways to form 'new' sets. These sets (``types'') are
presently characterized by just a type predicate.
~nl[]
The task of specifying user-defined data definitions (``types'') and supporting
random testing is elegantly solved by characterizing 'type' using both a
type predicate and a type enumerator.
~nl[]
~nl[]
What is a ~em[type] in our data definition framwork?
We say that ~c[foo] is a 'type' if there exists a predicate
function ~c[foop] and either a constant list of values
~c[*foo-values*] (if it's finite) or an enumerator function
~c[nth-foo] (if it's infinite) that maps natural numbers to data
objects that satisfy ~c[foop]. If ~em[foo] is ~st[supported]
by our framework, i.e. the forementioned conditions are met, then
the name ~em[foo] can be used in defining other types using
~c[defdata].
~nl[]
The framework supports all the ground data types and the common
data types present in the initial(ground) ACL2 world.
The framework also treats each data object in the ACL2 universe as a
singleton 'type', i.e. a set with just one element, the data object
itself. The type which represents all of the ACL2 universe is
called ~c[all]; every 'type' is thus a subset of ~c[all].
~nl[]
Sophisticated users may want to define custom
types manually, for example to define a type which represents
positive multiples of 3. In ACL2 we can define such a type by the
following predicate:
~bv[]
(defun pos-multiple-of-threep (v)
(if (posp v)
(equal 0 (mod v 3))
nil))
~ev[]
In order to ~st[support] this type within our framework, all one needs to do
is to define its enumerator, which is a bijection from the set of natural numbers
to the set of positive multiples of 3:
~bv[]
(defun nth-pos-multiple-of-three (n)
(if (natp n)
(* 3 (1+ n))
3))
~ev[]
The framework provides a macro ~c[defdata] to specify combinations of
supported 'types', thus relieving the user of the trouble of
defining predicates and enumerators by hand. 'Types' allow users
to refer to them by name in these data definitions. One can also
use ~c[register-data-constructor] to introduce custom notions of
product data. ~c[defdata-subtype] and ~c[defdata-disjoint] are
used to specify relations among supported 'types'.
We illustrate some uses of the framework:
~bv[]
(register-data-constructor (consp cons)
((allp car) (allp cdr))
:proper t)
(register-custom-type nat (t nth-nat . natp))
(defdata loi (oneof 'nil
(cons integer loi)))
(defdata-subtype nat rational)
(defdata-disjoint symbol string)
~ev[]
For more details on data-definitions framework refer ___.
")
;set verbose and printstats & only-counterexample flags
(defmacro set-acl2s-defdata-verbose (v)
":Doc-Section ACL2::DATA-DEFINITIONS
Control amount of output printed by defdata~/
By default this parameter is set to ~c[nil].
If set to ~c[t], you will see all of the output
generated by ACL2 and the defdata macro.
Recommend ~em[not] setting it, unless you want to debug
or want to peek into whats happening below the hood.
~bv[]
Usage:
(set-acl2s-defdata-verbose nil)
~ev[]~/
"
`(assign acl2s-defdata-verbose ,v))
;internal debug flag
(defmacro set-acl2s-defdata-debug (v)
`(assign acl2s-defdata-debug ,v))
(defun get-acl2s-defdata-debug-fn (state)
(declare (xargs :stobjs (state)))
(let ((b (acl2::f-boundp-global 'acl2s-defdata-debug state)))
(if b
(acl2::f-get-global 'acl2s-defdata-debug state)
nil)))
(defmacro get-acl2s-defdata-debug ()
`(get-acl2s-defdata-debug-fn state))
;end of internal debug flag
(defconst *default-defdata-verbose* nil)
(defun get-acl2s-defdata-verbose-fn (state)
(declare (xargs :stobjs (state)))
(let ((b (acl2::f-boundp-global 'acl2s-defdata-verbose state)))
(if b
(acl2::f-get-global 'acl2s-defdata-verbose state)
*default-defdata-verbose*)))
(defmacro get-acl2s-defdata-verbose ()
":Doc-Section ACL2::DATA-DEFINITIONS
Get the current verbosity for output printed by defdata~/
Returns ~c[t] if verbosity is turned on, ~c[nil] otherwise.
~bv[]
Usage:
(get-acl2s-defdata-verbose)
~ev[]~/
"
`(get-acl2s-defdata-verbose-fn state))
(defconst *default-defdata-use-guards* nil);Sep 3rd 2012
(defun get-acl2s-defdata-use-guards-fn (state)
(declare (xargs :stobjs (state)))
(let ((b (acl2::f-boundp-global 'acl2s-defdata-use-guards state)))
(if b
(acl2::f-get-global 'acl2s-defdata-use-guards state)
*default-defdata-use-guards*)))
(defmacro get-acl2s-defdata-use-guards ()
":Doc-Section ACL2::DATA-DEFINITIONS
Get the setting for use of guards in functions generated by defdata~/
Returns ~c[t] if use of guards is turned on, ~c[nil] otherwise.
~bv[]
Usage:
(get-acl2s-defdata-use-guards)
~ev[]~/
"
`(get-acl2s-defdata-use-guards-fn state))
(defmacro set-acl2s-defdata-use-guards (v)
":Doc-Section ACL2::DATA-DEFINITIONS
Use(and verify) guards in functions generated by defdata~/
By default this parameter is set to ~c[t].
~bv[]
Usage:
(set-acl2s-defdata-use-guards t)
~ev[]~/
"
`(assign acl2s-defdata-use-guards ,v))
(set-state-ok t)
;------- define some useful constructors -------;
#||
(defun find-elim-rules (wrld)
(declare (xargs :guard (plist-worldp wrld)))
(if (endp wrld)
nil
(let ((trip (car wrld)))
(if (eq (second trip) 'eliminate-destructors-rule)
(cons trip (find-elim-rules (cdr wrld)))
(find-elim-rules (cdr wrld))))))
||#
(defun get-constructor-predicate-and-destructors (fn wrld)
(declare (xargs :guard (and (symbolp fn)
(plist-worldp wrld))))
(if (endp wrld)
nil
(let ((trip (car wrld)))
(if (and (eq (second trip) 'eliminate-destructors-rule)
(>= (len trip) 6))
(let ((info (fifth trip))
(foo (sixth trip)))
(if (and (consp foo)
(consp (car foo))
(eq (caar foo) fn)
(alistp (cdar foo)))
(cons
(if (and (consp info)
(consp (car info))
(consp (caar info))
(symbolp (caaar info)))
(caaar info)
'allp)
(strip-cars (cdar foo)))
(get-constructor-predicate-and-destructors fn (cdr wrld))))
(get-constructor-predicate-and-destructors fn (cdr wrld))))))
;; TODO: what about well-foundedness?
#||
(thm (implies (consp x)
(and (o< (acl2-count (car x)) (acl2-count x))
(o< (acl2-count (cdr x)) (acl2-count x)))))
(default-well-founded-relation (w state))
||#
;; nah. doesn't imply compositions well-founded. ASK Peter!!
;;-- stores information about data contructors
;;--i.e. constructor name, cons predicate and (pred destructor) pairs, measure-fn and the foll:
;;--flags :proper ((:proper) for proper constructors and nil otherwise)
;eg :
; (/ ( () rationalp ((numerator . integerp) ( denominator . posp)) . acl2-count))
; (cons ( (:proper) consp ((car . allp) ( cdr . allp)) . acl2-count))
;;--
;;--completely modifed by harshrc on 27-Aug-2009 from a table to a global
;;--CHANGED BACK to TABLE
(table data-constructors nil nil :guard
(and ;; len >= 3 ;;--modified by harshrc
(consp val)
(consp (cdr val))
(consp (cddr val))
(let ((flags (car val))
(predicate (cadr val))
(dlst (caddr val))
(msr-fn (cdddr val)));;--modifed by harshrc
(and
;; list of flags
(keyword-listp flags)
;; predicate function (allp for all) for image of constructor
(symbolp predicate)
(plausible-predicate-functionp predicate world)
(symbolp msr-fn)
(or (allows-arity msr-fn 1 world)
(eq msr-fn 'none));;-- msr a one-param fn?? -harshrc
;; (dfn . pfn) alist in parameter order where
;; dfn names destructor
;; pfn intended domain predicate function (allp for all)
(alistp dlst)
(allows-arity key (len dlst) world)
(allow-arity-lst (strip-cars dlst) 1 world)
(plausible-predicate-function-listp (strip-cdrs dlst)
world)))))
;auto-generated constructors have same shape but only syntactic guards
(table record-constructors nil nil :guard
(and
(consp val)
(consp (cdr val))
(consp (cddr val))
(let ((flags (car val))
(predicate (cadr val))
(dlst (caddr val))
(msr-fn (cdddr val)))
(and
;; list of flags
(keyword-listp flags)
(symbolp predicate)
(symbolp msr-fn)
(symbol-alistp dlst)))))
#||
;auto-generated constructors have only synctatic guards
(defun add-to-record-constructors-global (constructor cons-info ctx state)
(declare (xargs :stobjs (state) :mode :program
:guard (and (symbolp constructor)
(consp cons-info))))
(let ((key constructor)
(val cons-info))
(if (and
(consp val)
(consp (cdr val))
(consp (cddr val))
(let ((flags (car val))
(predicate (cadr val))
(dlst (caddr val))
(msr-fn (cdddr val)))
(and
;; list of flags
(keyword-listp flags)
(symbolp predicate)
(symbolp msr-fn)
(symbol-alistp dlst))))
(let* ((data-cons-alst (get-data-constructors-global))
(cons-entry (assoc-eq key data-cons-alst)))
(if (consp cons-entry)
(if (not (equal (cdr cons-entry) cons-info))
(er soft ctx "~x0 already present in the global record-constructors table! Illegal to modify it!!~%" key)
(value '(value-triple :redundant)))
(let ((data-cons-alst (acons key val data-cons-alst)))
(er-progn
(set-record-constructors-global data-cons-alst)
(value `(value-triple ,(cons key val)))))))
(er soft ctx "Constructor ~x0 and its Info ~x1 are invalid, and cannot be added to generated-constructor table!~%" key val))))
||#
;; selectors for the above constructors stored in the *-constructor
;; tables, use them only.
(defun cons-name-entry (constructor-table-entry)
(declare (xargs :guard (and (consp constructor-table-entry)
(consp (cdr constructor-table-entry))
(consp (cddr constructor-table-entry))
(consp (cdddr constructor-table-entry)))))
(car constructor-table-entry))
(defun predicate-name-entry (constructor-table-entry)
(declare (xargs :guard (and (consp constructor-table-entry)
(consp (cdr constructor-table-entry))
(consp (cddr constructor-table-entry))
(consp (cdddr constructor-table-entry)))))
(caddr constructor-table-entry))
(defun dex-pairs-entry (constructor-table-entry)
(declare (xargs :guard (and (consp constructor-table-entry)
(consp (cdr constructor-table-entry))
(consp (cddr constructor-table-entry))
(consp (cdddr constructor-table-entry)))))
(cadddr constructor-table-entry))
(defun measure-fn-entry (constructor-table-entry)
(declare (xargs :guard (and (consp constructor-table-entry)
(consp (cdr constructor-table-entry))
(consp (cddr constructor-table-entry))
(consp (cdddr constructor-table-entry)))))
(cddddr constructor-table-entry))
;;--normalise a constructor/destructor form
;;-- sfn => (sfn . allp)
;;-- (sfn . pfn) ==> (sfn . pfn)
;;-- (pfn sfn) ==> (sfn . pfn) where sfn is constructor/destructor? and pfn is pred
(defun fix-structor-and-pred (p ctx)
(cond ((symbolp p)
(cons p 'allp))
((and (consp p)
(symbolp (car p))
(symbolp (cdr p))) ; (sfn . pfn)
p)
((and (consp p)
(symbolp (car p))
(consp (cdr p))
(symbolp (cadr p))
(null (cddr p))) ; (pfn sfn)
(cons (cadr p) (car p)))
(t
(er hard? ctx
"Invalid function with predicate: ~x0"
p))))
;;-- returns list of form ((numerator . rationalp) ...)
(defun fix-structor-and-pred-lst (lst ctx)
(declare (xargs :guard (and (true-listp lst) (symbolp ctx))))
(if (endp lst)
nil
(cons (fix-structor-and-pred (car lst) ctx)
(fix-structor-and-pred-lst (cdr lst) ctx))))
;;--return a list of single argument(x) calls
;;--(apply-to-x-lst '(ap bp cp))
;;-- ==> ((AP X) (BP X) (CP X))
(defun apply-to-x-lst (fns)
(declare (xargs :guard (true-listp fns)))
(if (endp fns)
nil
(cons (list (car fns) 'x)
(apply-to-x-lst (cdr fns)))))
(defun apply-mget-to-x-lst (fields quotep)
(declare (xargs :guard (and (booleanp quotep)
(symbol-listp fields))))
(if (endp fields)
nil
(let ((d-keyword-name (intern (symbol-name (car fields)) "KEYWORD")))
(cons (list 'acl2::mget (if quotep (kwote d-keyword-name) d-keyword-name) 'x)
(apply-mget-to-x-lst (cdr fields) quotep)))))
;;--eg:(get-proper-dex-theorems 'cons '(car cdr))
;;-- ==>
;;--((EQUAL (CAR (CONS CAR CDR)) CAR)
;;-- (EQUAL (CDR (CONS CAR CDR)) CDR))
(defun get-proper-dex-theorems1 (conx-name dex-names rem-dex-names recordp)
(declare (xargs :guard (and (symbol-listp dex-names)
(booleanp recordp)
(symbol-listp rem-dex-names))))
(if (endp rem-dex-names)
nil
(if recordp
(let ((d-keyword-name (intern (symbol-name (car rem-dex-names)) "KEYWORD")))
(cons `(equal (mget ,d-keyword-name (,conx-name . ,dex-names))
,(car rem-dex-names))
(get-proper-dex-theorems1 conx-name dex-names
(cdr rem-dex-names) recordp)))
(cons `(equal (,(car rem-dex-names) (,conx-name . ,dex-names))
,(car rem-dex-names))
(get-proper-dex-theorems1 conx-name dex-names
(cdr rem-dex-names) recordp)))))
(defun get-proper-dex-theorems (conx-name dex-names recordp)
(declare (xargs :guard (and (booleanp recordp) (symbol-listp dex-names))))
(get-proper-dex-theorems1 conx-name dex-names dex-names recordp))
;;-- (get-improper-dex-theorems 'rational '(numerator denominator) '(integerp posp))
;;-- gives
;;-- ((INTEGERP (NUMERATOR (RATIONAL NUMERATOR DENOMINATOR)))
;;-- (POSP (DENOMINATOR (RATIONAL NUMERATOR DENOMINATOR))))
(defun get-improper-dex-theorems1 (conx-name dex-names
rem-dex-names
rem-dex-prexs
recordp)
(declare (xargs :guard (and (symbol-listp dex-names)
(symbol-listp rem-dex-names)
(booleanp recordp);records
(symbol-listp rem-dex-prexs))))
(if (endp rem-dex-names)
nil
(if recordp
(let ((d-keyword-name (intern (symbol-name (car rem-dex-names)) "KEYWORD")))
(cons `(,(car rem-dex-prexs) (mget ,d-keyword-name (,conx-name . ,dex-names)))
(get-improper-dex-theorems1 conx-name dex-names
(cdr rem-dex-names)
(cdr rem-dex-prexs) recordp)))
(cons `(,(car rem-dex-prexs) (,(car rem-dex-names) (,conx-name . ,dex-names)))
(get-improper-dex-theorems1 conx-name dex-names
(cdr rem-dex-names)
(cdr rem-dex-prexs) recordp)))))
(defun get-improper-dex-theorems (conx-name dex-names dex-prexs recordp)
(declare (xargs :guard (and (symbol-listp dex-names)
(booleanp recordp);records
(symbol-listp dex-prexs))))
(get-improper-dex-theorems1 conx-name dex-names
dex-names dex-prexs recordp))
(defun build-one-param-calls (fns params)
(declare (xargs :guard (and (symbol-listp fns)
(symbol-listp params)
(= (len fns) (len params)))))
(if (endp fns)
nil
(if (eq (car fns) 'ACL2::ALLP)
(build-one-param-calls (cdr fns) (cdr params))
(cons (list (car fns) (car params))
(build-one-param-calls (cdr fns) (cdr params))))))
;(o< (acl2-count (car x)) (acl2-count x))
;(o< (acl2-count (cdr x)) (acl2-count x))
(defun build-measure-calls (dex-names)
(declare (xargs :guard (true-listp dex-names)))
(if (endp dex-names)
nil
(cons `(o< (acl2-count (,(car dex-names) x)) (acl2-count x))
(build-measure-calls (cdr dex-names)))))
;;--added measure-fn flag with default 'none
(defmacro register-data-constructor (constructor destructor-lst
&key
hints
(proper 't)
(measure-fn 'none)
rule-classes)
":Doc-Section DATA-DEFINITIONS
Register a data constructor to be used in data definitions(FOR ADVANCED USERS)~/
This is an advanced macro to be used only by power users and people who
would like to add their own custom notions of product data.
It can be used to register a data-constructor like ~c[cons]
with the data-definition framework, so that ~em[product datatypes]
can be specified using ~c[defdata].
For example ~em[cons] is already registered for you:
~bv[]
(register-data-constructor (consp cons)
((allp car) (allp cdr)))
~ev[]
It says that ~c[cons] is a constructor and anything that satisfies
~c[consp] can be constructed with this constructor, like ~c[(cons nat pos)].
The destructor ~c[car] tells what the first argument to ~c[cons] was, and
anything specifying ~c[allp] can be given in that argument position. The
destructor ~c[cdr] tells what the second argument to ~c[cons] was, and
anything satisfying ~c[allp] can be given in that argument position. The
proper keyword specifies that any product data that was formed using
~c[cons] can be uniquely destructed back to its original arguments. For
e.g ~c[(car (cons 1 3))] gives you 1. Compare this with an improper constructor
~c[/] which is shown in the examples below, where ~c[(denominator (/ 6 42))]
gives back 7 instead of 42.
~bv[]
Examples(These are already registered(like all ground acl2 constructors)):
(register-data-constructor (acl2-numberp complex)
((rationalp realpart) (rationalp imagpart))
:proper t)
;an improper constructor
(register-data-constructor (rationalp /)
((integerp numerator) (posp denominator))
:proper nil)
~ev[]
~bv[]
Usage:
(register-data-constructor (<constructor-predicate> <constructor>)
((<destructor-predicate> <destructor>) ...)
[:proper <boolean>]
[:hints hints]
[:rule-classes rule-classes]
)
~ev[]~/
"
(declare (xargs :guard (and (true-listp destructor-lst)
(booleanp proper))))
(let* ((ctx 'register-data-constructor)
(conx-pair (fix-structor-and-pred constructor ctx))
(dex-pairs (fix-structor-and-pred-lst destructor-lst ctx))
(conx-name (car conx-pair))
(conx-prex (cdr conx-pair))
(dex-names (strip-cars dex-pairs))
(dex-prexs (strip-cdrs dex-pairs))
(table-name 'data-constructors)
(msr-fn measure-fn)
(hyps (build-one-param-calls dex-prexs dex-names))
(hyp (if (and (consp hyps) (consp (cdr hyps))) ;at least 2
(cons 'AND hyps)
(if (consp hyps)
(car hyps)
t))))
;(thm (implies (consp x)
; (and (o< (acl2-count (car x)) (acl2-count x))
; (o< (acl2-count (cdr x)) (acl2-count x)))))
; (local (defthm ,(modify-symbol nil conx-name "-MEASURE-FN-VALID")
; (and (o-p (,msr-fn x))
; (implies (,conx-prex x)
; (and . ,(build-measure-calls dex-names) )))))
`(progn
(defthm ,(modify-symbol "" conx-name "-CONSTRUCTOR-PRED")
(implies ,hyp
(,conx-prex (,conx-name . ,dex-names)))
:hints ,hints
:rule-classes ,rule-classes)
(defthm ,(modify-symbol "" conx-name "-CONSTRUCTOR-DESTRUCTORS")
(implies (,conx-prex x)
(and . ,(acl2::listlis dex-prexs (apply-to-x-lst dex-names))))
:hints ,hints
:rule-classes ,rule-classes)
,@(and proper
`((defthm ,(modify-symbol "" conx-name "-CONSTRUCTOR-ELIM-RULE")
(implies (,conx-prex x)
(equal (,conx-name . ,(apply-to-x-lst dex-names))
x))
:hints ,hints
:rule-classes ,(if rule-classes '(:elim) 'nil))
(defthm ,(modify-symbol "" conx-name "-CONSTRUCTOR-DESTRUCTORS-PROPER")
(implies ,hyp
(and . ,(get-proper-dex-theorems conx-name dex-names nil)))
:hints ,hints
:rule-classes ,rule-classes)))
(table
,table-name
',conx-name
',(list* (if proper '(:proper) '())
conx-prex dex-pairs
msr-fn)
:put)
(value-triple (list ',constructor ',destructor-lst)))))
(table record-elim-table nil nil
:guard (consp val)) ;elim-rule-p
(table map-elim-table nil nil
:guard (consp val))
(defun get-elim-rule (nume term destructor-term)
"see add-elim-rule in defthms.lisp"
(declare (xargs :mode :program))
(let* ((lst (acl2::unprettyify term))
(hyps (caar lst))
(equiv (acl2::ffn-symb (cdar lst)))
(lhs (acl2::fargn (cdar lst) 1))
(rhs (acl2::fargn (cdar lst) 2))
(dests (cdr lhs))
(rule (acl2::make acl2::elim-rule
:rune -1 ;dummy
:nume nume
:hyps hyps
:equiv equiv
:lhs lhs
:rhs rhs
:crucial-position 1 ;(mget :fieldname x) or (mget a x)
:destructor-term destructor-term
:destructor-terms dests)))
rule))
(defun record-gen-theorem-conclusions (rem-dex-names rem-dex-prexs)
(declare (xargs :guard (and (symbol-listp rem-dex-names)
(symbol-listp rem-dex-prexs))))
(if (endp rem-dex-names)
nil
(let ((d-keyword-name (intern (symbol-name (car rem-dex-names)) "KEYWORD"))) ;term
(cons `(,(car rem-dex-prexs) (mget ,d-keyword-name x))
(record-gen-theorem-conclusions (cdr rem-dex-names)
(cdr rem-dex-prexs))))))
(defun make-generalize-rules-for-records (conx-prex dex-names concls hints)
(declare (xargs :guard (and (symbol-listp dex-names)
(true-listp concls)
(symbolp conx-prex))))
(if (endp concls)
'()
(cons `(defthm ,(modify-symbol (string-append (symbol-name (car dex-names)) "-") conx-prex "-RECORD-ELIM-GENERALIZE")
(implies (,conx-prex x)
,(car concls))
:rule-classes :generalize
:hints ,hints)
(make-generalize-rules-for-records conx-prex (cdr dex-names) (cdr concls) hints))))
(defmacro register-record-constructor (constructor destructor-lst
&key
hints
(rule-classes '(:rewrite :tau-system))
forcep ;force typ hyps
(measure-fn 'none)
)
(declare (ignorable forcep))
(declare (xargs :guard (and (true-listp destructor-lst)
(booleanp forcep))))
(let* ((ctx 'register-record-constructor)
(conx-pair (fix-structor-and-pred constructor ctx))
(dex-pairs destructor-lst)
(conx-name (car conx-pair))
(conx-prex (cdr conx-pair))
(dex-names (strip-cars dex-pairs))
(dex-prexs (strip-cdrs dex-pairs))
(msr-fn measure-fn)
(elim-rule-name (modify-symbol "" conx-name "-RECORD-ELIM-RULE"))
(nume (list :elim elim-rule-name))
(elim-term `(implies (,conx-prex x)
(equal (,conx-name
. ,(apply-mget-to-x-lst dex-names t))
x)))
(elim-rule (get-elim-rule nume elim-term '?))
(gen-concls (record-gen-theorem-conclusions dex-names dex-prexs))
(generalize-rules (make-generalize-rules-for-records conx-prex dex-names gen-concls hints)))
`(progn
(defthm ,(modify-symbol "" conx-name "-RECORD-PRED")
(implies (and . ,(build-one-param-calls dex-prexs dex-names))
(,conx-prex (,conx-name . ,dex-names)))
:hints (("goal" :in-theory (e/d (,conx-prex) (acl2::mset-diff-mset))))
:rule-classes ,rule-classes)
(defthm ,elim-rule-name
(implies (,conx-prex x)
(equal (,conx-name
. ,(apply-mget-to-x-lst dex-names '()))
x))
:hints ,hints
:rule-classes nil) ;elim form not satisfied TODO
(defthm ,(modify-symbol "" conx-name "-RECORD-DESTRUCTORS")
(implies (,conx-prex x)
(and . ,(acl2::listlis dex-prexs (apply-mget-to-x-lst dex-names '()))))
:hints ,hints
:rule-classes :rewrite) ;,rule-classes) (mget :field x) does not satisfy tau-rule accepted form!! TODO
;; (defthm ,(modify-symbol "" conx-name "-RECORD-DESTRUCTORS")
;; (implies (and . ,(build-one-param-calls dex-prexs dex-names))
;; (and . ,(append (get-proper-dex-theorems conx-name dex-names t)
;; (get-improper-dex-theorems conx-name dex-names dex-prexs t))))
;; :rule-classes nil ;subsumed by record theorems
;; :hints ,hints)
,@generalize-rules
(table record-constructors
',conx-name
',(list* '(:generated :proper)
conx-prex dex-pairs
(or msr-fn 'none))
:put)
(table record-elim-table ',conx-name ',elim-rule :put)
(value-triple (list ',constructor ',destructor-lst)))))
;;--(get-enumerator-symbol 'int) ==> NTH-INT
(defun get-enumerator-symbol (sym)
(declare (xargs :guard (symbolp sym)))
(modify-symbol "NTH-" sym ""))
(defun get-enumerator-symbol-lst (syms)
(declare (xargs :guard (symbol-listp syms)))
(if (endp syms)
nil
(cons (get-enumerator-symbol (car syms))
(get-enumerator-symbol-lst (cdr syms)))))
(defun get-uniform-enumerator-symbol (sym)
(declare (xargs :guard (symbolp sym)))
(modify-symbol "NTH-" sym "-UNIFORM"))
(defun get-uniform-enumerator-symbol-lst (syms)
(declare (xargs :guard (symbol-listp syms)))
(if (endp syms)
nil
(cons (get-uniform-enumerator-symbol (car syms))
(get-uniform-enumerator-symbol-lst (cdr syms)))))
;;--(get-values-symbol 'foo) ==> *FOO-VALUES*
(defun get-values-symbol (sym)
(declare (xargs :guard (symbolp sym)))
(modify-symbol "*" sym "-VALUES*"))
(defun get-values-symbol-lst (syms)
(declare (xargs :guard (symbol-listp syms)))
(if (endp syms)
nil
(cons (get-values-symbol (car syms))
(get-values-symbol-lst (cdr syms)))))
(defun get-predicate-testthm-symbol (sym)
(declare (xargs :guard (symbolp sym)))
(modify-symbol "" sym "P-TESTTHM"))
(defun get-predicate-def-thm-symbol (sym)
(declare (xargs :guard (symbolp sym)))
(modify-symbol "" sym "P-DEFINITION-THM"))
(defun get-predicate-def-thm-symbol-lst (syms)
(declare (xargs :guard (symbol-listp syms)))
(if (endp syms)
nil
(cons (get-predicate-def-thm-symbol (car syms))
(get-predicate-def-thm-symbol-lst (cdr syms)))))
(defun get-predicate-testthm-symbol-lst (syms)
(declare (xargs :guard (symbol-listp syms)))
(if (endp syms)
nil
(cons (get-predicate-testthm-symbol (car syms))
(get-predicate-testthm-symbol-lst (cdr syms)))))
;;--add enumeration events maintaining consistency with history
(defun compute-define-enumeration-type-events (nm psym vsym tsym values wrld)
(declare (xargs :mode :program))
(let ((len-v (len values)))
(list (if (decode-logical-name vsym wrld)
`(assert-event (set-equalp-equal ',values ,vsym))
`(progn
(defconst ,vsym ',values)
(defun ,(get-enumerator-symbol nm) (n)
(declare (xargs :guard (natp n)))
(nth (mod n ,len-v) ,vsym))))
(if (decode-logical-name psym wrld)
`(local (defthm ,tsym
(iff (member-equal x ,vsym)
(,psym x))
:rule-classes nil))
`(defun ,psym (x)
(declare (xargs :guard t))
(if (member-equal x ,vsym) t nil)))
`(register-custom-type ,nm ,len-v ,vsym ,psym
:type-class enum))))
;--TODO: Instead of guards, the syntax check should be explicit!
(defmacro define-enumeration-type (name values)
(declare (xargs :guard (and (symbolp name))))
;(true-listp values)))) ;can pass a defconst name too
`(make-event
(cons 'progn
(append
(compute-define-enumeration-type-events
',name
(get-predicate-symbol ',name)
(get-values-symbol ',name)
(get-predicate-testthm-symbol ',name)
,values
(w state))
`((value-triple ',',name))))))
#|;Test code
(define-enumeration-type boolean '(t nil))
(define-enumeration-type zero '(0))
(define-enumeration-type asdf '(a s d f))
;|#
; a symbol FOO is a "type" if
; - FOOP is a recognizer for it and
; either -NTH-FOO is an enumerator for it (infinite)
; -*FOO-VALUES* is the set of values for it (finite)
; a "type operator" is, for now, ONEOF or ANYOF (for now, the same)
(deflabel oneof)
(deflabel anyof)
; got rid of LISTOF because it's hard to do implicit recursion
; plus it's pedagogically dubious
;-- got it back in view of its usability --modified by --harshrc
(deflabel listof)
(deflabel record)
(deflabel map);ADDED 3rd May 2011 and again on 17 July '13
(deflabel set)
(deflabel enum)
; a "constructor" is registered as above, with proper arity
; or a macro which expands to function(s) that are constructors
;;--eg:(build-dex-exprs '((car . allp) (cdr . allp)) '(cons x y))
;;-- ==> ((CAR (CONS X Y)) (CDR (CONS X Y)))
(defun build-dex-exprs (dex-info expr)
(declare (xargs :mode :program
:guard (alistp dex-info)))
(if (endp dex-info)
nil
(cons `(,(caar dex-info) ,expr)
(build-dex-exprs (cdr dex-info) expr))))
;; syntax-directed translation of data definition
;; to obtain predicate expression list
(mutual-recursion
(defun er-trans-datadef-as-predicate-lst (defbody-lst new-preds expr-lst
new-constructors ctx wrld state)
(declare (xargs :mode :program
:guard (and (symbol-listp new-preds)
(true-listp expr-lst)
(= (len expr-lst) (len defbody-lst))
(symbol-alistp new-constructors)
(symbolp ctx)
(plist-worldp wrld))))
(if (atom defbody-lst)
(if (null defbody-lst)
(value nil)
(er soft ctx "Expecting a true list but last cdr is ~x0" defbody-lst))
(er-let* ((car-pred
(er-trans-datadef-as-predicate (car defbody-lst)
new-preds (car expr-lst)
new-constructors
ctx wrld state))
(cdr-pred-lst
(er-trans-datadef-as-predicate-lst (cdr defbody-lst)
new-preds (cdr expr-lst)
new-constructors
ctx wrld state)))
(value (cons car-pred cdr-pred-lst)))))
;;-- translate type-expression(defbody) to obtain a predicate expression body
;;-- for a predicate function with argument 'expr', lets say the [[expr]] = v
;;-- cases defbody :=
;;-- 1. constant value 'val' => (eq val v)
;;-- 2. predicate symbol(new/in-history) => (pred v)
;;-- 3. (oneof ...) => (or ...)
;;-- 4. (cons texp1 texp2) => (and (consp v)
;;-- (pred1 (car v))
;;-- (pred2 (cdr v)))
;;-- 5. new constructor: (node t1 t2 t2) => (nodep v)
;;-- 6. macro calls are expanded, then recurse on result
(defun er-trans-datadef-as-predicate (defbody new-preds expr
new-constructors
ctx wrld state)
(declare (xargs :guard (and (symbol-listp new-preds)
(symbol-alistp new-constructors)
(symbolp ctx)
(plist-worldp wrld))))
(cond ((possible-constant-valuep defbody)
(er-let* ((val (er-get-constant-value defbody ctx wrld state)))
(let ((comparison (cond ((symbolp val) 'eq)
((eqlablep val) 'eql)
(t 'equal))))
(value `(,comparison ,expr ',val)))))
((symbolp defbody)
(if (member-eq (get-predicate-symbol defbody) new-preds)
(let* ((pred (get-predicate-symbol defbody)))
(value `(,pred ,expr)))
(er-let* ((pred (er-get-predicate defbody ctx wrld state)))
(value `(,pred ,expr)))))
; should be a cons if we get here
(t
(let ((comb (car defbody)))
(cond
((or (eq comb 'oneof)
(eq comb 'anyof))
(er-let* ((rst (er-trans-datadef-as-predicate-lst
(cdr defbody) new-preds
(make-list (len (cdr defbody))
:initial-element expr)
new-constructors
ctx wrld state)))
(value `(or . ,rst))))
(t ; look up as constructor, then as macro
(let* ((registered-conx-info
(or (assoc-eq comb (table-alist 'data-constructors wrld))
(assoc-eq comb (table-alist 'record-constructors wrld))))
(to-be-created-conx-info (assoc-eq comb new-constructors))
(conx-info (or registered-conx-info to-be-created-conx-info)))
(if conx-info
(let ((conx-pred (predicate-name-entry conx-info))
(dex-info (dex-pairs-entry conx-info)))
(if registered-conx-info
(er-let* ((rst (er-trans-datadef-as-predicate-lst
(cdr defbody) new-preds
(build-dex-exprs dex-info expr)
new-constructors
ctx wrld state)))
(value `(and (,conx-pred ,expr)
. ,rst)))
;harshrc: The reason why the following is different from the
;registered-conx-info, is that one can have a (cons string int), where
;the string and int are stronger requirements than allp of cons
;requires. But when we are constructing a new record on the fly, say
;(oneof 'Leaf (node (key . int) (left . tree) (right . tree))), the
;requirements are tight and hence there is no reason to recur on the
;components, since their type constraints are reflected in nodep itself.
(value (list conx-pred expr))))
(if (true-listp (acl2-getprop comb 'macro-args wrld
:default :undefined))
;; attempt macro expansion
(er-let* ((newdefbody (macroexpand1 defbody ctx state)))
(er-trans-datadef-as-predicate newdefbody new-preds expr
new-constructors
ctx wrld state))
;; otherwise, illegal
(er soft ctx "~x0 is not a recognized constructor or ~
type combinator." comb))))))))))
)
;;--If all arguments are constant values, then the constructor calls can be
;;--evaluated/combined using the following functions to obtain constant values.
;;e.g:
#||
(EVAL-FN-COMBINE-ARG-LSTS 'cons
'((a b) ("g" ((12) . c) ((x "no") . ok)))
'top-level state)
((A . "g")
(B . "g")
(A (12) . C)
(B (12) . C)
(A (X "no") . OK)
(B (X "no") . OK))
||#
(defun eval-fn-combine-arg-lsts0 (fn arglst-sofar rev-arglsts ctx state)
(declare (xargs :mode :program))
(cond ((endp rev-arglsts)
(er-let* ((v (trans-eval-single-value (cons fn arglst-sofar) ctx state)))
(value (list v))))
((endp (car rev-arglsts))
(value nil))
(t
(er-let*
((values1 (eval-fn-combine-arg-lsts0 fn
(cons (list 'quote (caar rev-arglsts))
arglst-sofar)
(cdr rev-arglsts)
ctx state))
(values2 (eval-fn-combine-arg-lsts0 fn
arglst-sofar
(cons (cdar rev-arglsts)
(cdr rev-arglsts))
ctx state)))
(value (union-equal values1 values2))))))
(defun eval-fn-combine-arg-lsts (fn arglsts ctx state)
(declare (xargs :mode :program))
(eval-fn-combine-arg-lsts0 fn nil (reverse arglsts) ctx state))
;static analysis of data-definitions to get finite data defs:
;fixed point iteration over data def structure.
(mutual-recursion
(defun er-get-finite-data-def-lst (defbody-lst finite-defs
new-constructors
ctx wrld state)
(declare (xargs :mode :program
:guard (and (true-listp defbody-lst)
(symbol-alistp finite-defs)
(symbol-alistp new-constructors)
(symbolp ctx)
(plist-worldp wrld))))
(if (endp defbody-lst)
(value nil)
(er-let* ((fst (er-get-finite-data-def (car defbody-lst) finite-defs
new-constructors ctx wrld state))
(rst (er-get-finite-data-def-lst (cdr defbody-lst) finite-defs
new-constructors ctx wrld state)))
(value (cons fst rst)))))
;; (value nil) if infinite or (value <list of values>) if finite
(defun er-get-finite-data-def (defbody finite-defs new-constructors ctx wrld state)
(declare (xargs :guard (and (symbol-alistp finite-defs)
(symbol-alistp new-constructors)
(symbolp ctx)
(plist-worldp wrld))))
(cond ((possible-constant-valuep defbody);is a constant(singleton type)
(er-let* ((val (er-get-constant-value defbody ctx wrld state)))
(value (list val))))
((symbolp defbody) ;is a symbol (typename)
(if (assoc-eq defbody finite-defs)
(value (cdr (assoc-eq defbody finite-defs)))
(let* ((vsym (get-values-symbol defbody))
(quoted-values (acl2-getprop vsym 'const wrld)))
;; assume infinite if values not available
(if quoted-values
(value (cadr quoted-values)) ; unquote
(value nil)))))
;; should be a cons if we get here
(t ; either a product or union type expression or a macro call
(let ((comb (car defbody)))
(cond
((or (eq comb 'oneof)
(eq comb 'anyof)) ;UNION
(er-let* ((rst (er-get-finite-data-def-lst
(cdr defbody) finite-defs
new-constructors
ctx wrld state)))
(if (member-eq nil rst) ; at least one infinite branch
(value nil)
(value (union-lsts rst)))))
(t ; look up as constructor(registered or new), then as macro
(let* ((reg-conx-info
(or (assoc-eq comb (table-alist 'data-constructors wrld))
(assoc-eq comb (table-alist 'record-constructors wrld))))
(to-be-created-conx-info (assoc-eq comb new-constructors))
(conx-info (or reg-conx-info
to-be-created-conx-info)))
;;--conx-info e.g: (cons (:proper)
;;-- consp (car . allp) (cdr . allp))
;;-- what if its a macro? say list, will it already be
;;-- expanded when it reaches here? No, it gets expanded here only.
(if conx-info ;PRODUCT TYPE EXPRESSION
(er-let* ((rst (er-get-finite-data-def-lst
(cdr defbody) finite-defs
new-constructors
ctx wrld state)))
(if (or (member-eq nil rst) ; at least one infinite branch
; added the following condition to fix BUG below (June 26th '13), but this
; breaks the invariant that this function returns nil only for
; infinite types (ACHTUNG)
to-be-created-conx-info) ;records
(value nil)
(eval-fn-combine-arg-lsts
; harshrc 28th Aug '12: TODO - check if list* is a mistake or not. (BUG)
; 26th June '13 - list* is wrong, records are implemented differently now.
comb ;(if reg-conx-info comb 'list*)
rst ctx state)))
(if (true-listp (acl2-getprop comb 'macro-args wrld
:default :undefined))
;MACRO CALL
;; attempt macro expansion
(er-let* ((newdefbody (macroexpand1 defbody ctx state)))
(er-get-finite-data-def newdefbody finite-defs
new-constructors
ctx wrld state))
;; otherwise, illegal
(er soft ctx "~x0 is not a recognized constructor or ~
type combinator." comb))))))))))
)
; step in iteration
(defun er-get-finite-data-defs1 (defs finite-defs new-constructors ctx wrld state)
(declare (xargs :mode :program
:guard (and (symbol-alistp defs)
(symbol-alistp finite-defs)
(symbol-alistp new-constructors)
(symbolp ctx)
(plist-worldp wrld))))
(cond ((endp defs)
(value finite-defs))
((assoc-eq (caar defs) finite-defs)
(er-get-finite-data-defs1 (cdr defs) finite-defs new-constructors ctx wrld state))
(t
(er-let* ((new-def (er-get-finite-data-def (cadar defs) finite-defs
new-constructors
ctx wrld state)))
(er-get-finite-data-defs1 (cdr defs)
(if new-def ; finite (nil -> infinite)
(cons (cons (caar defs)
new-def)
finite-defs)
finite-defs)
new-constructors
ctx wrld state)))))
; iterate until fixed point
(defun er-get-finite-data-defs0 (defs finite-defs new-constructors ctx wrld state)
(declare (xargs :mode :program
:guard (and (symbol-alistp defs)
(symbol-alistp finite-defs)
(symbol-alistp new-constructors)
(symbolp ctx)
(plist-worldp wrld))))
(er-let* ((new-finite-defs (er-get-finite-data-defs1 defs finite-defs
new-constructors
ctx wrld state)))
(if (equal finite-defs new-finite-defs)
(value new-finite-defs)
(er-get-finite-data-defs0 defs new-finite-defs new-constructors ctx wrld state))))
; Start fix-point iteration
(defun er-get-finite-data-defs (defs new-constructors ctx wrld state)
(declare (xargs :mode :program
:guard (and (symbol-alistp defs)
(symbolp ctx)
(symbol-alistp new-constructors)
(plist-worldp wrld))))
(er-get-finite-data-defs0 defs nil new-constructors ctx wrld state))
#|| ;test code
(define-enumeration-type boolean '(t nil))
(register-data-constructor (consp cons)
((allp car) (allp cdr))
:proper t)
; harshrc Jun 26 '13: why would anyone define such a type clique?
(er-get-finite-data-defs '((foo (oneof 42 (cons boolean baz)))
(bar (oneof nil
(cons foo bar)))
(moo nil)
(baz (cons boolean moo)))
nil
'top-level (w state) state)
||#
;;-- gives back enumerator information
;;-- e.g:
;;-- (er-get-enumeration-info 'integer 'x nil '(acl2::nth-integer acl2::nth-rational) 'top-level (w state) state)
;;-- ==> (T ACL2::NTH-INTEGER X)
;;-- if nth-integer is already defined in current world then:
;;-- (er-get-enumeration-info 'integer 'x nil nil 'top-level (w state) state)
;;-- ==> (T ACL2::NTH-INTEGER X)
;;-- (er-get-enumeration-info 'boolean 'x nil nil 'top-level (w state) state)
;;-- ==> (2 NTH X *BOOLEAN-VALUES*)
(defun er-get-enumeration-info (type-name expr finite-defs inf-enum-syms uniform? ctx wrld state)
"returns (cons size enumcall), where size is the size of type-name and enumcall is
formed from expr and the enumerator associated with type-name."
(declare (xargs :mode :program
:guard (and (symbolp type-name)
(symbol-alistp finite-defs)
(symbol-listp inf-enum-syms)
(symbolp ctx)
(booleanp uniform?)
(plist-worldp wrld))))
(let* ((vsym (get-values-symbol type-name))
(values (or (second (acl2-getprop vsym 'const wrld))
(cdr (assoc-eq vsym finite-defs)))))
(if values
(let ((len-v (len values)))
(value (cons len-v
(if (= len-v 1)
(if uniform?
`(mv ',(car values) seed)
`',(car values))
(if uniform?
`(mv (nth (mod seed ,len-v) ,vsym) seed)
`(nth ,expr ,vsym))))))
(let* ((esym (if uniform?
(get-uniform-enumerator-symbol type-name)
(get-enumerator-symbol type-name))))
;;-check if arity matches(implicit check if enum is defined in wrld)
(cond ((allows-arity esym (if uniform? 2 1) wrld)
(if uniform?
(value (cons t `(,esym m seed)))
(value (cons t `(,esym ,expr)))))
((member-eq esym inf-enum-syms)
(if uniform?
;14 July 2013
;every recursive call is given a probably different measure argument
; 21 July - due to termination issues in mutual-recursive defs, lets simply do a 1-/zp recursion. todo hack
(value (cons t ;(mv-let (m seed) (random-index-seed m seed)
`(,esym m seed)))
(value (cons t `(,esym ,expr)))))
(t
(er soft ctx
"Type specifier ~x0 is invalid. To be valid, it needs a valid ~
enumerator ~x1 or a valid list of values ~x2."
type-name esym vsym)))))))
#||
(define-enumeration-type boolean '(t nil))
(register-data-constructor (consp cons)
((allp car) (allp cdr))
:proper t)
(defconst *foo-values* '(1 2 3))
(defconst *bar-values* '(a))
(er-get-enumeration-info 'foo 'x nil nil nil 'top-level (w state) state)
(er-get-enumeration-info 'bar 'x nil nil nil 'top-level (w state) state)
||#
(defun get-inf-enum-infos (l)
(declare (xargs :guard (true-listp l)))
(cond ((endp l)
l)
((and (consp (car l))
(eq 't (caar l)))
(cons (car l)
(get-inf-enum-infos (cdr l))))
(t
(get-inf-enum-infos (cdr l)))))
; finite size = 1 i.e. singleton values)
(defun get-singleton-enum-infos (l)
(declare (xargs :guard (true-listp l)))
(cond ((endp l)
l)
((and (consp (car l))
(equal 1 (caar l));size 1
;(possible-constant-valuep (cdar l)) ;Comes from trusted code, so no need.
);singleton value
(cons (car l)
(get-singleton-enum-infos (cdr l))))
(t
(get-singleton-enum-infos (cdr l)))))
; fin = finite size > 1 (i.e. finite but not singleton values)
(defun get-fin-enum-infos (l)
(declare (xargs :guard (true-listp l)))
(cond ((endp l)
l)
((and (consp (car l))
(natp (caar l))
(not (and (equal 1 (caar l))
;(possible-constant-valuep (cdar l)) ;Comes from trusted code, so no need.
)));not singleton value
(cons (car l)
(get-fin-enum-infos (cdr l))))
(t
(get-fin-enum-infos (cdr l)))))
(defun +-cars0 (l acc)
(declare (xargs :mode :program))
(if (endp l)
acc
(+-cars0 (cdr l) (+ acc (caar l)))))
(defun +-cars (l)
(declare (xargs :mode :program))
(+-cars0 l 0))
(defun *-cars0 (l acc)
(declare (xargs :mode :program))
(if (endp l)
acc
(*-cars0 (cdr l) (* acc (caar l)))))
(defun *-cars (l)
(declare (xargs :mode :program))
(*-cars0 l 1))
;NOTE: enum-info-lst that the following 2 functions
;gets as arguments is a sorted one, with singleton enums
; finite-enums occurring before the inf-enums in the lst
;enum-info-lst is of form : (size/magnitude . (enumerator call)) or (1 . constant-value)
;build union expressions for generating enumerator functions
(defun build-inf-choices-enum-n (enum-info-lst n)
(declare (xargs :mode :program))
(cond ((not (consp enum-info-lst))
':error)
((not (consp (cdr enum-info-lst)))
(cdar enum-info-lst))
(t
`(if (= n ,n)
,(cdar enum-info-lst)
,(build-inf-choices-enum-n (cdr enum-info-lst) (1+ n))))))
; enum-info-lst should always be a cons
(defun build-choice-enum1 (enum-info-lst)
(declare (xargs :mode :program))
(cond ((not (consp enum-info-lst))
':error);should not get here
((not (consp (cdr enum-info-lst)))
(cdar enum-info-lst));the last choice
;remaining have atleast 2 choices
((natp (caar enum-info-lst)) ; finite
`(if (< x ,(caar enum-info-lst)) ;pushed the (not integerp) call to build-choice-enum
,(cdar enum-info-lst)
,(if (and (not (consp (cddr enum-info-lst))) ;if the next choice is the last one
(equal 1 (caadr enum-info-lst))) ;and is a singleton
(build-choice-enum1 (cdr enum-info-lst));dont do a let
`(let ((x (- x ,(caar enum-info-lst))))
,(build-choice-enum1 (cdr enum-info-lst))))))
(t ; assume all remaining are infinite
(let ((nchoices (len enum-info-lst)))
`(mv-let
(n x)
(switch-nat ,nchoices (nfix x)) ;nfix helps termination
,(build-inf-choices-enum-n enum-info-lst 0))))))
;harshrc: we dont need repeated (or (not (integerp x) ..) calls, once in the
;beginning is enough. This improves readability of generated enums
(defun build-choice-enum (enum-info-lst)
(declare (xargs :mode :program))
(cond ((not (consp enum-info-lst))
':error)
((not (consp (cdr enum-info-lst)))
(cdar enum-info-lst)) ;no need to change here anything(cos this is a top-level call only)
((natp (caar enum-info-lst)) ; finite
`(if (or (not (integerp x));top-level check for non-integers
(< x ,(caar enum-info-lst)))
,(cdar enum-info-lst)
;;if the next choice is the last one
,(if (and (not (consp (cddr enum-info-lst)))
(equal 1 (caadr enum-info-lst))) ;and is a singleton
(build-choice-enum1 (cdr enum-info-lst));dont do a let
`(let ((x (- x ,(caar enum-info-lst))))
,(build-choice-enum1 (cdr enum-info-lst))))))
(t ; assume all remaining are infinite
(let ((nchoices (len enum-info-lst)))
`(mv-let (n x)
(switch-nat ,nchoices (nfix x));nfix helps termination
,(build-inf-choices-enum-n enum-info-lst 0))))))
#||
(build-choice-enum '((5 nth x *blah5*)
(7 nth x *blah7*)
(1 quote nil)
(t nth-whatever x)
(t nth-moo x)))
(build-choice-enum '((1 quote nil)
(1 quote pl)
(5 nth x *blah5*)
(7 nth x *blah7*)
(t nth-whatever x)
(t nth-moo x)
))
||#
(defun build-case-clauses-enum-uniform (enum-info-lst i)
(declare (xargs :verify-guards nil
:guard (and (true-listp enum-info-lst)
(implies (consp enum-info-lst) (consp (car enum-info-lst)))
(natp i))))
(if (endp enum-info-lst)
'()
(if (endp (cdr enum-info-lst))
`((otherwise ,(cdar enum-info-lst)))
(b* ((enum-call (cdar enum-info-lst)))
(cons `(,i ,enum-call)
(build-case-clauses-enum-uniform (cdr enum-info-lst) (1+ i)))))))
(defun build-choice-enum-uniform-nonrec (nonrec-eil len-nonrec)
(declare (xargs :verify-guards nil));(consp nonrec-eil)
(if (<= len-nonrec 1)
(cdar nonrec-eil)
`(mv-let (n seed)
(random-index-seed ,len-nonrec seed)
(case n ,@(build-case-clauses-enum-uniform nonrec-eil 0)))))
(defun build-choice-enum-uniform (nonrec-eil rec-eil)
(declare (xargs :verify-guards nil)) ;(consp nonrec-eil)
(b* ((len-nonrec (len nonrec-eil))
(len-rec (len rec-eil)))
(if (consp rec-eil)
`(if (or (zp m)
(not (unsigned-byte-p 31 seed))) ;for termination proofs
,(build-choice-enum-uniform-nonrec nonrec-eil len-nonrec)
,(if (<= len-rec 1)
`(let ((m (1- m))) ;to ensure termination
,(cdar rec-eil))
`(let ((m (1- m))) ;to ensure termination
(mv-let (n seed)
(random-index-seed ,len-rec seed)
(case n ,@(build-case-clauses-enum-uniform rec-eil 0))))))
(build-choice-enum-uniform-nonrec nonrec-eil len-nonrec))))
;build up product expressions for enumerator functions to be generated
;order is maintained while generating values
;enum-info-lst is of form : (size/magnitude . (enumerator call)) or (1 . constant-value)
(defun build-product-comb-enum-actuals (enum-info-lst fin-n inf-n)
(declare (xargs :mode :program))
(cond ((endp enum-info-lst)
nil)
((equal 1 (caar enum-info-lst));singleton
(cons (cdar enum-info-lst)
(build-product-comb-enum-actuals (cdr enum-info-lst) fin-n inf-n)))
((natp (caar enum-info-lst)) ; finite enum info
(cons `(let ((x (nth ,fin-n finxlst)))
,(cdar enum-info-lst))
(build-product-comb-enum-actuals (cdr enum-info-lst) (1+ fin-n) inf-n)))
(t ; infinite
(cons `(let ((x (nth ,inf-n infxlst)))
,(cdar enum-info-lst))
(build-product-comb-enum-actuals (cdr enum-info-lst) fin-n (1+ inf-n))))))
(defun get-fin-and-sing-enum-infos (l)
(declare (xargs :guard (true-listp l)))
(cond ((endp l)
l)
((and (consp (car l))
(natp (caar l)))
(cons (car l)
(get-fin-and-sing-enum-infos (cdr l))))
(t
(get-fin-and-sing-enum-infos (cdr l)))))
(defun build-product-comb-enum (enum-info-lst conx)
(declare (xargs :mode :program))
(let* ((fin-info-lst (get-fin-and-sing-enum-infos enum-info-lst))
(fin-info-lst1 (get-fin-enum-infos enum-info-lst))
(inf-info-lst (get-inf-enum-infos enum-info-lst))
(call (cons conx (build-product-comb-enum-actuals enum-info-lst 0 0)))
(expr1 (if (consp inf-info-lst)
(if (null (cdr inf-info-lst)) ;len=1
`(let ((infxlst (list (nfix x))));29 Apr 2011 fix termination of mut-rec enum-fns
,call)
`(let ((infxlst (split-nat ,(len inf-info-lst) (nfix x))));29 Apr 2011 fix termination of mut-rec enum-fns
,call))
call))
(expr2 (if fin-info-lst1 ;only if there are choices to be made(in singleton theres no choice)
(if inf-info-lst
`(mv-let
(finxlst x)
(multiple-switch-nat ',(strip-cars fin-info-lst)
(nfix x));nfix helps termination
;;pass on the seed if there are inf enums ahead
,expr1)
`(mv-let
(finxlst x)
(multiple-switch-nat ',(strip-cars fin-info-lst)
(nfix x));nfix helps termination
(declare (acl2::ignorable x))
;;dont pass on seed if no inf enums ahead
,expr1))
;;else
expr1)))
expr2))
(program)
(defun make-name-with-pos-suffix (expr i ans)
(if (zp i)
ans
(make-name-with-pos-suffix expr (1- i)
(cons (modify-symbol "" expr (to-string i)) ans))))
(defun build-product-comb-enum-uniform1 (enum-info-lst expr i body)
(if (endp enum-info-lst)
body
`(mv-let (,(modify-symbol "" expr (to-string i)) seed)
,(cdar enum-info-lst)
,(build-product-comb-enum-uniform1 (cdr enum-info-lst)
expr (1+ i) body))))
(defun build-product-comb-enum-uniform (enum-info-lst comb)
(let ((expr 'val))
(build-product-comb-enum-uniform1
enum-info-lst expr 1
`(mv (,comb ,@(make-name-with-pos-suffix expr (len enum-info-lst) '()))
(the (unsigned-byte 31) seed)))))
(logic)
#||
(build-product-comb-enum '((t nth-whatever x)
(1 quote nil)
(5 nth x *blah5*)
(7 nth x *blah7*)
(t nth-moo x)
)
'list)
(build-product-comb-enum '((1 quote nil)
(1 quote 1)
(1 . 2)
(t nth-what x)
(t nth-moo x))
'woo)
||#
;2 funs added by harshrc
(defun found-recursive-enum-call (inf-enum-call inf-enum-syms)
(declare (xargs :guard (true-listp inf-enum-syms)))
(if (endp inf-enum-syms)
nil
(if (mem1 (car inf-enum-syms) (flatten inf-enum-call nil))
;if found a inf-enum in the call its recursive return immediately
t
(found-recursive-enum-call inf-enum-call (cdr inf-enum-syms)))))
(local (defthm append-of-2-lists-is-true-list
(implies (and (true-listp x1)
(true-listp x2))
(true-listp (append x1 x2)))
:rule-classes :type-prescription))
;partition enums by those which are base cases first, ie non-recursive
;This fun fixes a bug where theres a recursive defdata and the sequence is
;such that in the oneof the recursive case comes first than the base case
;BUG-FIX: This sorting function is not stable i.e it changes the order
;of those enums with the same size.
(defun partition-inf-enum-infos (inf-enum-infos inf-enum-syms non-rec-ans rec-ans)
(declare (xargs :verify-guards nil
:guard (and (true-listp inf-enum-syms)
(true-listp rec-ans)
(true-listp non-rec-ans))))
(if (endp inf-enum-infos)
(mv non-rec-ans rec-ans)
(if (found-recursive-enum-call (cdr (car inf-enum-infos)) inf-enum-syms)
(partition-inf-enum-infos (cdr inf-enum-infos)
inf-enum-syms
non-rec-ans
;;add to rec-ans in order
(append rec-ans (list (car inf-enum-infos))))
(partition-inf-enum-infos (cdr inf-enum-infos)
inf-enum-syms
;;add to non-rec-ans in order
(append non-rec-ans (list (car inf-enum-infos)))
rec-ans))))
;; (sort-inf-enum-infos '( (T LET ((INFXLST (SPLIT-NAT 2 X)))
;; (CONS (LET ((X (NTH 0 INFXLST)))
;; (ACL2::NTH-INTEGER X))
;; (LET ((X (NTH 1 INFXLST)))
;; (NTH-FOO X))))
;; (T ACL2::NTH-INTEGER X)) '(nth-foo) nil)
;;; the following clique builds enumerators of product and union types
;;; inf <- inf * inf - use split-nat to get two naturals
;;; inf <- inf * fin - use switch-nat to get one natural and one bounded val
;;; inf <- inf + inf - use switch-nat with 2 possibilies to determine which
;;; possibility to choose and the natural number to give it
;;; inf <- inf + fin - if < #finite posibilities, use that. otherwise,
;;; subtract #finite possibilities to get natural
;;; split-nat : bijection from N -> N * N (takes a Nat and returns two Nat)
;;; switch-nat: takes a number of possibilities and another natural number
;;; and returns a value from 0 to possibilities-1 and a natural number.
(mutual-recursion
(defun er-trans-datadef-as-enumerator-lst (defbody-lst finite-defs
inf-enum-syms uniform?
new-constructors ctx wrld state)
(declare (xargs :mode :program
:guard (and (symbol-alistp finite-defs)
(symbol-listp inf-enum-syms)
(symbol-alistp new-constructors)
(symbolp ctx)
(booleanp uniform?)
(plist-worldp wrld))))
(if (atom defbody-lst)
(if (null defbody-lst)
(value nil)
(er soft ctx "Expecting a true list but last cdr is ~x0" defbody-lst))
(er-let* ((car-stuff
(er-trans-datadef-as-enumerator (car defbody-lst)
finite-defs inf-enum-syms
uniform? new-constructors
ctx wrld state))
(cdr-stuff-lst
(er-trans-datadef-as-enumerator-lst (cdr defbody-lst)
finite-defs inf-enum-syms
uniform? new-constructors
ctx wrld state)))
(value (cons car-stuff cdr-stuff-lst)))))
(defun er-trans-datadef-as-enumerator (defbody finite-defs inf-enum-syms
uniform? new-constructors ctx wrld state)
(declare (xargs :guard (and (symbol-alistp finite-defs)
(symbol-listp inf-enum-syms)
(symbol-alistp new-constructors)
(symbolp ctx)
(booleanp uniform?)
(plist-worldp wrld))))
(cond ((possible-constant-valuep defbody)
(er-let* ((val (er-get-constant-value defbody ctx wrld state)))
(value (cons 1 (if uniform?
`(mv ',val seed)
`',val)))))
((symbolp defbody)
(er-get-enumeration-info defbody 'x
finite-defs inf-enum-syms uniform?
ctx wrld state)) ;the only place finite-defs is used
; should be a cons if we get here
(t
(let ((comb (car defbody)))
(cond
((or (eq comb 'oneof)
(eq comb 'anyof))
(if (atom (cdr defbody))
(er soft ctx "~x0 must be given at least one argument." comb)
(er-let* ((rst (er-trans-datadef-as-enumerator-lst
(cdr defbody) finite-defs inf-enum-syms
uniform? new-constructors
ctx wrld state)))
(b* ((singleton-rst (get-singleton-enum-infos rst))
(fin-rst (get-fin-enum-infos rst))
(inf-rst (get-inf-enum-infos rst))
((mv nonrec-inf-rst rec-inf-rst)
(partition-inf-enum-infos inf-rst inf-enum-syms nil nil))
;finite values enumerated first and in inf case, base case come first
;by base case i mean non-recursive enums --harshrc (this fixes a bug)
(new-rst (append singleton-rst
fin-rst
nonrec-inf-rst
rec-inf-rst))
;build union enum expression
(enumerator (if uniform?
(build-choice-enum-uniform (append singleton-rst fin-rst nonrec-inf-rst)
rec-inf-rst)
(build-choice-enum new-rst)))
(magnitude (or (consp inf-rst)
;add finite sizes if no inf exists
(+ (len singleton-rst)
(+-cars fin-rst)))))
(value (cons magnitude enumerator))))))
(t
; look up as constructor(registered or new), then as macro
(b* ((registered-conx-info (or (assoc-eq comb (table-alist 'data-constructors wrld))
(assoc-eq comb (table-alist 'record-constructors wrld))))
(to-be-created-conx-info (assoc-eq comb new-constructors))
((unless (or registered-conx-info
to-be-created-conx-info
(true-listp (acl2-getprop comb 'macro-args wrld
:default :undefined))))
;; illegal
(er soft ctx "~|~x0 is not a type combinator, a recognized constructor or a macro expanding to one.~|" comb)))
(er-let* ((rst (er-trans-datadef-as-enumerator-lst
(cdr defbody) finite-defs inf-enum-syms
uniform? new-constructors
ctx wrld state)))
(let* (;(singleton-rst (get-singleton-enum-infos rst)) ;No need to multiple below by 1
(fin-rst (get-fin-enum-infos rst))
;build product enum expression
(inf-rst (get-inf-enum-infos rst))
(enumerator (if uniform?
(build-product-comb-enum-uniform rst comb)
(build-product-comb-enum rst comb))) ; order matters
(magnitude (or (consp inf-rst)
;multiply finite sizes if no inf exists
(*-cars fin-rst))))
(value (cons magnitude enumerator))))
;; ;; attempt macro expansion -- 12 July 2013 - no need to do this here like in trans-predicate
;; (er-let* ((newdefbody (macroexpand1 defbody ctx state)))
;; (er-trans-datadef-as-enumerator newdefbody
;; finite-defs
;; inf-enum-syms
;; uniform?
;; new-constructors
;; ctx wrld state))
)))))))
)
#||
(define-enumeration-type boolean '(t nil))
(register-data-constructor (consp cons)
((allp car) (allp cdr))
:proper t)
;(defconst *foo-values* '(1 2 3))
(er-trans-datadef-as-enumerator-lst
'((oneof (cons integer
foo)
integer))
nil
'(nth-foo acl2::nth-integer) ;;-- changed from foo
nil
'top-level
(w state)
state)
||#
(defun cons-up-names-decls-lls-bodies (names decls lls bodies)
(declare (xargs :guard (and (true-listp names)
(true-listp decls)
(true-listp lls)
(true-listp bodies))))
(if (endp names)
nil
(cons (if (consp decls);not null (only include declare if its not empty)
(list (car names) (car lls) (car decls) (car bodies))
(list (car names) (car lls) (car bodies)))
(cons-up-names-decls-lls-bodies (cdr names)
(cdr decls)
(cdr lls)
(cdr bodies)))))
(defun collect-with-plausible-pred-fns (lst wrld)
(declare (xargs :guard (and (symbol-listp lst)
(plist-worldp wrld))))
(if (endp lst)
nil
(if (plausible-predicate-functionp (get-predicate-symbol (car lst)) wrld)
(cons (car lst)
(collect-with-plausible-pred-fns (cdr lst) wrld))
(collect-with-plausible-pred-fns (cdr lst) wrld))))
;;Record types
;;1. make constructor, its predicate, and the destructors
;;2. register the above using register-data-constructor
#|
(defdata tree (oneof nil
(node (val . symbol) (left . tree) (right . tree))))
==>
(defdata tree (oneof nil
(node symbol tree tree))) ;just like peters version
X:tree = (node 'a (node 'b nil nil) nil)
X:tree = (node (val . 'a) (left . (node (val . 'b) (left . nil) (right . nil))) (right . nil))
(defdata cons (record (car . all) (cdr . all)))
X:cons = (record (car . '("sd" 2 3)) (cdr . 'abc))
X:cons = (cons '("sd 2 3) 'abc)
(defdata triple (record (fst . all) (scd . all) (thd . all)))
X:triple = (record (fst . 1) (scd . "hello") (thd . '(+ 23 45))) ;can be recog, cos destr are unique
X:triple = (triple 1 "hello" '(+ 23 45))
(defdata hyperlink (record (protocol . string)
(address . string)
(display . string)))
X:hyperlink = (record (protocol . "httpx") (display . "my site") (address . "192.168.1.10"))
==>
X:hyperlink = (hyperlink "httpx" "my site" "192.168.1.10")
|#
(defun build-dex-recordImpl-bindings (dex-names dex-var-names rec-expr)
(declare (xargs :guard (and (symbol-listp dex-names)
(symbol-listp dex-var-names)
(= (len dex-var-names)
(len dex-names)))))
(if (endp dex-names)
nil
(let* ((dname (car dex-names))
(dname-var (car dex-var-names))
(d-keyword-name (intern (symbol-name dname) "KEYWORD")))
(cons (list dname-var (list 'mget d-keyword-name rec-expr))
(build-dex-recordImpl-bindings (cdr dex-names) (cdr dex-var-names) rec-expr)))))
(defthm build-dex-recordImpl-bindings-sig1
(acl2::all->=-len (build-dex-recordImpl-bindings dex-names dex-var-names rec-expr)
2))
(defun build-dex-alist (dex-names dex-var-names)
(declare (xargs :guard (and (symbol-listp dex-names)
(symbol-listp dex-var-names)
)))
(if (endp dex-names)
nil
(let* ((dname (car dex-names))
(dvar-name (car dex-var-names))
(d-keyword-name (intern (symbol-name dname) "KEYWORD")))
`(mset ,d-keyword-name ,dvar-name
,(build-dex-alist (cdr dex-names) (cdr dex-var-names))))))
;;make a constructor defun and corresponding predicate
(defun make-constructor-predicate (conx-name dex-pairs)
(declare (xargs :guard (and (symbolp conx-name)
(symbol-alistp dex-pairs))
:guard-hints (("Goal" :in-theory (disable modify-symbol string-append)))))
(b* ((dex-orig-names (strip-cars dex-pairs))
((unless (symbol-listp dex-orig-names))
(er hard? 'make-constructor-predicate
"~|Destructor type decl list ~x0 should be an alist with symbol keys.~%"
dex-pairs))
(prefix (string-append (symbol-name conx-name) "-"))
(dex-names (modify-symbol-lst prefix dex-orig-names "")) ;make new prefixed destr names
(dex-var-names (modify-symbol-lst "Var" dex-names ""))
(dex-preds (strip-cdrs dex-pairs))
((unless (symbol-listp dex-preds))
(er hard? 'make-constructor-predicate
"~|Destructor type decl list ~x0 should be an alist with symbol values.~%"
dex-pairs))
(dex-prex-calls (build-one-param-calls dex-preds dex-var-names))
(dex-alist (build-dex-alist dex-orig-names dex-var-names))
(dex-bindings (build-dex-recordImpl-bindings dex-orig-names dex-var-names 'v))
(conx-pred (get-predicate-symbol conx-name)))
`((defund ,conx-pred (v) ;disabled def
(declare (xargs :guard t))
(if (not (acl2::non-empty-good-map v));for guards and termination (CCG)
nil
(let ,dex-bindings
(and (equal v (mset 'constructor ',conx-name ,dex-alist))
,@dex-prex-calls
)))))))
;cons-up calls of above function
(defun cons-up-conx-prex-ev (conx-names dex-pairs-lst)
(declare (xargs :guard (and (symbol-listp conx-names)
(true-list-symbol-alistp dex-pairs-lst)
(= (len conx-names) (len dex-pairs-lst)))))
(if (endp conx-names)
nil
(append (make-constructor-predicate (car conx-names) (car dex-pairs-lst))
(cons-up-conx-prex-ev (cdr conx-names) (cdr dex-pairs-lst)))))
;guard verif thm
(defthm symbol-alistp-strip-cars-is-symbol-listp
(implies (symbol-alistp P)
(symbol-listp (strip-cars P)))
:rule-classes :tau-system)
;make the event for defining constructor
(defun make-constructor (conx-name dex-pairs)
(declare (xargs :guard (and (symbolp conx-name)
(symbol-alistp dex-pairs))))
(b* ((dex-orig-names (strip-cars dex-pairs))
(prefix (string-append (symbol-name conx-name) "-"))
(dex-names (modify-symbol-lst prefix dex-orig-names "")) ;make new prefixed destr names
(dex-var-names (modify-symbol-lst "Var" dex-names ""))
(dex-prex (strip-cdrs dex-pairs))
((unless (symbol-listp dex-prex))
(er hard? 'make-constructor-predicate
"~|Destructor type decl list ~x0 should be an alist with symbol values.~%"
dex-pairs))
(dex-prex-calls (build-one-param-calls dex-prex dex-var-names))
(dex-alist (build-dex-alist dex-orig-names dex-var-names)))
`((defun ,conx-name ,dex-var-names
(declare (xargs :guard (and . ,dex-prex-calls)))
(mset 'constructor ',conx-name ,dex-alist)))))
;cons-up calls of above function
(defun cons-up-conx-ev (conx-names dex-pairs-lst)
(declare (xargs :guard (and (symbol-listp conx-names)
(true-list-symbol-alistp dex-pairs-lst)
(= (len conx-names) (len dex-pairs-lst)))))
(if (endp conx-names)
nil
(append (make-constructor (car conx-names) (car dex-pairs-lst));append instead of cons
(cons-up-conx-ev (cdr conx-names) (cdr dex-pairs-lst)))));bcos (append (X) Y) = (cons X Y)
(defun make-measure-fn (conx-name dex-pairs)
(declare (xargs :mode :program
:guard (and (symbolp conx-name)
(symbol-alistp dex-pairs))))
(let* ((dex-names (strip-cars dex-pairs))
(prefix (string-append (symbol-name conx-name) "-"))
(dex-names (modify-symbol-lst prefix dex-names "")) ;make new prefixed destr names
;(dex-prex (strip-cdrs dex-pairs))
(conx-pred (get-predicate-symbol conx-name))
(msr-fn (modify-symbol "" conx-name "-COUNT")))
`((defun ,msr-fn (v)
(if (,conx-pred v)
(+ 1 . ,(list-up-lists
(make-list (len dex-names) :initial-element msr-fn)
(build-one-param-calls dex-names
(make-list (len dex-names)
:initial-element 'v))))
0)))))
;cons up events that define destructor functions
(defun cons-up-dex-defuns (conx-pred selector-fn-names dex-names)
(declare ;(ignore conx-pred)
(xargs :guard (and (symbol-listp selector-fn-names)
(symbol-listp dex-names)
(equal conx-pred conx-pred))))
(if (endp dex-names)
nil
(let* ((sel-fn-name (car selector-fn-names))
(dname (car dex-names))
(d-keyword-name (intern (symbol-name dname) "KEYWORD")))
(cons `(defun ,sel-fn-name (v)
(declare (xargs :guard (,conx-pred v))) ;not working with new record impl
;:verify-guards nil))
(mget ,d-keyword-name v))
(cons-up-dex-defuns conx-pred
(cdr selector-fn-names)
(cdr dex-names))))))
;top level call for the previous function, basically generate code for destrs
(defun make-destructors (conx-name dex-pairs)
(declare (xargs :guard (and (symbolp conx-name)
(symbol-alistp dex-pairs))))
(let* ((dex-names (strip-cars dex-pairs))
(prefix (string-append (symbol-name conx-name) "-"))
(selector-fn-names (modify-symbol-lst prefix dex-names "")) ;make new prefixed destr names
(conx-pred (get-predicate-symbol conx-name)))
(cons-up-dex-defuns conx-pred selector-fn-names dex-names)))
(defun cons-up-mod-defuns (conx-pred modifier-fn-names dex-names)
(declare ;(ignore conx-pred)
(xargs :guard (and (symbol-listp modifier-fn-names)
(symbol-listp dex-names)
(equal conx-pred conx-pred))))
(if (endp dex-names)
nil
(let* ((mod-fn-name (car modifier-fn-names))
(dname (car dex-names))
(d-keyword-name (intern (symbol-name dname) "KEYWORD")))
(cons `(defun ,mod-fn-name (new v)
(declare (xargs :guard (,conx-pred v))) ;not working with new record impl
;:verify-guards nil))
(mset ,d-keyword-name new v))
(cons-up-mod-defuns conx-pred
(cdr modifier-fn-names)
(cdr dex-names))))))
(defun make-modifiers (conx-name dex-pairs)
(declare (xargs :guard (and (symbolp conx-name)
(symbol-alistp dex-pairs))))
(let* ((dex-names (strip-cars dex-pairs))
(prefix (string-append "SET-" (string-append (symbol-name conx-name) "-")))
(modifier-fn-names (modify-symbol-lst prefix dex-names ""))
(conx-pred (get-predicate-symbol conx-name)))
(cons-up-mod-defuns conx-pred modifier-fn-names dex-names)))
;do the above for more than one constructors defined during a datadef
(defun append-up-dex-ev (conx-names dex-pairs-lst)
(declare (xargs :guard (and (symbol-listp conx-names)
(true-list-symbol-alistp dex-pairs-lst)
(= (len conx-names) (len dex-pairs-lst))
)))
(if (endp conx-names)
nil
(append (make-destructors (car conx-names) (car dex-pairs-lst))
(append-up-dex-ev (cdr conx-names) (cdr dex-pairs-lst)))))
(defun append-up-modifiers-ev (conx-names dex-pairs-lst)
(declare (xargs :guard (and (symbol-listp conx-names)
(true-list-symbol-alistp dex-pairs-lst)
(= (len conx-names) (len dex-pairs-lst))
)))
(if (endp conx-names)
nil
(append (make-modifiers (car conx-names) (car dex-pairs-lst))
(append-up-modifiers-ev (cdr conx-names) (cdr dex-pairs-lst)))))
(defun rcd-patbind-macro-ev (conx-names dex-pairs-lst)
(declare (xargs :guard (and (symbol-listp conx-names)
(true-list-symbol-alistp dex-pairs-lst)
(= (len conx-names) (len dex-pairs-lst)))))
(if (endp conx-names)
nil
(let* ((dex-names (strip-cars (car dex-pairs-lst)))
(conx-name (car conx-names))
(prefix (string-append (symbol-name conx-name) "-"))
(selector-fn-names (modify-symbol-lst prefix dex-names "")))
(cons `(acl2::def-patbind-macro ,conx-name ,selector-fn-names)
(rcd-patbind-macro-ev (cdr conx-names) (cdr dex-pairs-lst))))))
(defun compute-reg-conx-dex (conx-name dex-pairs)
(declare (xargs :guard (and (symbolp conx-name)
(symbol-alistp dex-pairs))))
(let* ((conx-pred (get-predicate-symbol conx-name))
(dex-names (strip-cars dex-pairs))
;(prefix (string-append (symbol-name conx-name) "-"))
;(dex-names (modify-symbol-lst prefix dex-names nil));make new prefixed destr names
(dex-prex (strip-cdrs dex-pairs))
(dex-pairs (cons-up-lists dex-names dex-prex))
;(msr-fn (modify-symbol nil conx-name "-COUNT"))
(conx-pair (cons conx-name conx-pred)))
`((register-record-constructor ,conx-pair
,dex-pairs
:hints (("Goal" :in-theory (e/d (,conx-pred))))))))
(defun cons-up-reg-conx-dex-ev (conx-names dex-pairs-lst)
(declare (xargs :guard (and (symbol-listp conx-names)
(true-list-symbol-alistp dex-pairs-lst)
(= (len conx-names) (len dex-pairs-lst)))))
(if (endp conx-names)
nil
(append (compute-reg-conx-dex (car conx-names) (car dex-pairs-lst))
(cons-up-reg-conx-dex-ev (cdr conx-names) (cdr dex-pairs-lst)))))
;;Enumerated types should not occur in mutually rec defs
#|
Enum types:
(defdata boolean (enum '(t nil))
(defdata rgbcolors (enum '(red blue green)))
(defdata suit (enum '(spades hearts diamonds clubs)))
X:suit = spades
X:rgbcolors = blue
|#
;;process enum form : compute enumeration events
;;Return value-triple nil if not of form enum
;;Returns a define-enumeration-type event form otherwise
(defun process-enum-form (defs ctx wrld)
(declare (xargs :mode :program))
;; 08/28/12 refactoring using b*
(b* (((when (> (len defs) 1)) ;;mutually recursive
(let ((defbodies (strip-cadrs defs)))
(if (and (true-list-listp defbodies)
(member-eq 'enum (strip-cars defbodies)))
(er hard? ctx
"Syntax error in use of enum: Enumerated type cannot appear ~
in mutually recursive definitions.~%")
nil)))
(def (car defs)) ;;single def
(name (car def))
(enumbody (cadr def))
(enumlen (len enumbody))
((unless (consp enumbody)) nil)
((unless (eq 'enum (car enumbody))) nil)
((unless (= enumlen 2))
(er hard? ctx
"Syntax error in enum: Enum ~x0 should be of following form: ~
(defdata <id> (enum <list-of-values>)) or ~
(defdata <id> (enum <val1> ...)) .~%" enumbody))
(values (cadr enumbody))
((unless (true-listp values))
(er hard? ctx
"Syntax error in enum: ~x0 must evaluate to a list of values.~%" values)))
(append
(compute-define-enumeration-type-events name
(get-predicate-symbol name)
(get-values-symbol name)
(get-predicate-testthm-symbol name)
values wrld)
`((value-triple ',name)))))
;;check for empty defs
(defun found-empty-defp (defs)
(declare (xargs :guard (true-listp defs)))
(if (endp defs)
nil
(let ((def (car defs)))
(if (< (len def) 2)
t
(if (and (= (len def) 2)
(consp (cadr def))
(and (= (len (cadr def)) 1)
(or (eq (caadr def) 'oneof)
(eq (caadr def) 'anyof)
(eq (caadr def) 'listof)
(eq (caadr def) 'record)
(eq (caadr def) 'map)
(eq (caadr def) 'set)
(eq (caadr def) 'range)
(eq (caadr def) 'enum))))
t
(found-empty-defp (cdr defs)))))))
(defun type-class-simple-p (x)
(mem-eq x '(:undefined acl2::union acl2::product acl2::singleton acl2::alias
acl2::primitive acl2::basic acl2::custom
enum record map set
listof range)))
(defthm type-class-simple-p-is-tau-pred
(booleanp (type-class-simple-p x))
:rule-classes :tau-system)
(defun type-class-simple-lst-p (xs)
(if (atom xs)
(null xs)
(and (type-class-simple-p (car xs))
(type-class-simple-lst-p (cdr xs)))))
(defun type-class-p (x)
(if (atom x)
(type-class-simple-p x)
(and (eq (car x) 'acl2::mutually-recursive)
(symbol-alistp (cdr x))
(type-class-simple-lst-p (strip-cdrs (cdr x))))))
(defthm type-class-p-is-tau-pred
(booleanp (type-class-p x))
:rule-classes :tau-system)
(defun len-values-enum (values-enum wrld)
(declare (xargs :mode :program))
(if (and (symbolp values-enum)
(quotep (acl2-getprop values-enum 'const wrld)))
(len (cadr (acl2-getprop values-enum 'const wrld)))
nil))
;;; Utility functions copied back from utilities.lisp
(defun is-a-constant-symbolp (x)
(or (keywordp x);a keyword
(booleanp x);t or nil
(legal-constantp x)));ACL2::CONSTANT
;Sig: Any -> Bool
;check if x can be used as an identifier, i.e. has not been previously defined
(defun is-a-identifier (x wrld)
(declare (xargs :mode :program))
(if (and (is-a-variablep x)
(acl2::new-namep x wrld))
x
nil))
;--------------------------TYPE Metadata Table----------------------------------------------
(defrec types-info%
(size
predicate
enumerator enum-uniform
enumerator-test enum-uniform-test
recursivep derivedp consistentp
type-class defs) NIL)
(defun types-info%-p (v)
(declare (xargs :guard T))
(case-match v
(
('types-info%
size
predicate
enumerator enum-uniform
enumerator-test enum-uniform-test
recursivep derivedp consistentp
typeclass defs)
(declare (ignorable enumerator enumerator-test enum-uniform-test defs))
(and (or (natp size)
(eq 't size))
(symbolp predicate)
(symbolp enum-uniform)
(booleanp recursivep)
(booleanp derivedp)
(booleanp consistentp)
(type-class-p typeclass)))))
;;-- stores information about types introduced using defdata
;;-- (key val)
;;;--Modified Oct2-2009 added test enumerator
;;-- (type-name (type-size type-enum . predicate))
;;-- (rational (t nth-rational rationalp nth-rational-test))
;;-- type-size is t for infinite type and a natural number if finite
;;-- type-enum can be either NTH-type-name or *type-name-VALUES*
;;--Note: predicate still can be such that name restriction is not there,
;;--for example we add atom in base.lisp. But for enum its strictly followed
;;Modified Jun 26 2011 harshrc
;;Use a records data structure for values in the table for easy
;;extensibility
;; Modified Aug 28 '12 to cutil record utility
;; 7th April 2013 - predicate constrained to be a tau predicate
;; 12 July 2013 - added uniform enumerator field
(table types-info-table nil nil :guard
(and
(types-info%-p val)
(b* ((TI.predicate (acl2::access types-info% val :predicate))
(TI.size (acl2::access types-info% val :size))
(TI.enumerator (acl2::access types-info% val
:enumerator))
(TI.enum-uniform (acl2::access types-info% val
:enum-uniform))
(TI.test-enumerator (acl2::access types-info% val
:enumerator-test))
;;(plausible-predicate-functionp TI.predicate world)
;; April 5th 2013 - should be a tau predicate
((unless (tau-predicate-p TI.predicate world))
(prog2$
(cw "~|~x0 is not a tau predicate. .
~|Possible debugging leads:
~| 1. (tau-data ~x0) is probably nil.
~| 2. Is ~x0 a everywhere constant function?
~| 3. Its not obvious that ~x0 is a predicate in which case,
~| submit the following as a :tau-system rule:
~| (booleanp ~x0) ~|" TI.predicate)
nil))
((unless (if (is-a-variablep TI.test-enumerator)
(or (allows-arity TI.test-enumerator 1 world)
(quotep (acl2-getprop TI.test-enumerator 'const world)))
t))
(prog2$
(cw "~|~x0 is not a valid test enumerator.~|" TI.test-enumerator)
nil))
((unless (and (eq TI.enum-uniform (get-uniform-enumerator-symbol key))
(allows-arity TI.enum-uniform 2 world)))
(prog2$
(cw "~|~x0 is not a valid uniform enumerator.~|" TI.enum-uniform)
nil))
((unless (if (eq TI.size 't)
(and (eq TI.enumerator (get-enumerator-symbol key))
(allows-arity TI.enumerator 1 world))
(or (and (eql 1 TI.size)
(possible-constant-valuep TI.enumerator));singleton
(and (natp TI.size) ;added a empty type (although it shudnt be allowed in normal defdata)
;(eq TI.enumerator (get-values-symbol key))
(eql TI.size (len-values-enum TI.enumerator world))))))
(prog2$
(cw "~|~x0 is not a valid enumerator.~|" TI.enumerator)
nil)))
t)))
;;make type consistency check event for all types in arg
;;Generate the foll form:
;; (thm (implies (natp x) (Tp (nth-T x)))) or
;; (thm (implies (< n (len *T-values*)) (Tp (nth n *T-values*))))
;; TODO.Note: *T-values* might be very big list in that case, there must be a cleaner/efficient way.
(defun cons-up-type-consistent-thm-ev (tnames wrld)
(declare (xargs :mode :program
:guard (symbol-listp tnames)))
(if (endp tnames)
nil
(let* ((tname (car tnames))
(tpred (get-predicate-symbol tname))
(tenum (get-enumerator-symbol tname))
(tvalues (get-values-symbol tname))
(tpred-lst (modify-symbol "" tpred "-LST-AUTO-GENERATED")))
(append (if (allows-arity tenum 1 wrld)
(list `(thm (implies (natp n) (,tpred (,tenum n)))
:hints (("Goal" :in-theory (e/d (,tpred ,tenum))))))
(list `(defun ,tpred-lst (xs)
(if (endp xs)
t
(and (,tpred (car xs))
(,tpred-lst (cdr xs)))))
`(thm (,tpred-lst ,tvalues))))
(cons-up-type-consistent-thm-ev (cdr tnames) wrld)))))
(defun make-enum-uniform-defun-ev (name enum)
(declare (xargs :guard (symbolp enum)))
`((defund ,name (m seed)
(declare (ignorable m))
(declare (type (unsigned-byte 31) seed))
(declare (xargs :verify-guards nil ;todo
:guard (and (natp m)
(unsigned-byte-p 31 seed))))
; 12 July 2013 - adding uniform random seed distribution to cgen enum
; we will take advantage of the recent addition for an uniform
; interface to both infinite and finite enum (defconsts)
(mv-let (n seed)
(random-natural-seed seed)
(mv (,enum n) (the (unsigned-byte 31) seed))))))
(defun register-custom-type-events (typename typesize enum pred
test-enum enum-uniform
type-class)
(declare (xargs :guard (and (symbolp typename)
(or (natp typesize) (eq typesize 't))
(symbolp enum)
(symbolp pred)
(symbolp test-enum)
(symbolp enum-uniform)
(type-class-p type-class))))
`((in-theory (disable ,(get-enumerator-symbol typename)))
,@(and (not enum-uniform)
(make-enum-uniform-defun-ev
(get-uniform-enumerator-symbol typename)
(get-enumerator-symbol typename)))
,@(and test-enum
(make-enum-uniform-defun-ev ;TODO check where this is used!
(get-uniform-enumerator-symbol test-enum) test-enum))
(table defdata::types-info-table ',typename
',(acl2::make types-info%
:size typesize
:enumerator enum
:predicate pred
:enumerator-test test-enum
:enum-uniform (if enum-uniform
enum-uniform
;; shudnt be empty
(get-uniform-enumerator-symbol typename))
:enum-uniform-test (get-uniform-enumerator-symbol test-enum)
:defs nil
:derivedp nil
:recursivep nil
:consistentp nil
:type-class type-class))
;;; 1 April 2014 -- use tau-database instead of internal graphs
;; (make-event
;; (er-progn
;; (trans-eval `(add-vertex$$ ',',typename R$ types-ht$)
;; 'register-custom-type state t)
;; (value '(value-triple :invisible)))
;; :check-expansion t)
; (add-datatype-node-batch ,typename)
; (sync-globals-for-dtg) ;sync globals with SCC and TC
(value-triple (list ',typename
',(list typesize enum pred test-enum
nil nil type-class)))
))
;register the type by adding it into the types-info-table
(defmacro register-custom-type (typename typesize enum pred
&key test-enum
enum-uniform
(type-class 'acl2::custom))
"Usage: (register-custom-type foo t nth-foo foop :test-enum my-nth-foo :type-class custom)
Purpose: add foo to type metadata table 'types-info-table'.
Second argument is t if foo is infinite, and a positive number o.w., in which case the
standard naming convention for the third arg (enumerator) is *foo-values*.
keyword args are optional."
`(with-output
:stack :push
:off ,#!acl2(remove1-eq 'error *valid-output-names*)
(make-event
'(progn . ,(register-custom-type-events typename typesize enum pred
test-enum enum-uniform
type-class)))))
(defmacro register-type (name &key predicate
enumerator
;optional
(size 't)
enum-uniform
enum-testing
skip-consistency-check ;dummy - but at one point we want to ensure some soundness check for the enumerators.
(type-class 'acl2::custom)
;defs
;derivedp
;recursivep
)
"export this as the external api"
(declare (ignorable skip-consistency-check))
`(with-output
:stack :push
:off ,#!acl2(remove1-eq 'error *valid-output-names*)
(make-event
(b* ((ctx 'register-type)
((unless (and ',predicate ',enumerator))
(er hard ctx "~| Keyword args predicate, enumerator are mandatory!~|")))
'(progn . ,(register-custom-type-events name size enumerator predicate
enum-testing enum-uniform
type-class))))))
;TYPES
;check if fn-name is a type-pred by checking for corresponding typ pres rule
;; (defun has-type-prescription-rule (fn-name wrld)
;; (declare (xargs :guard (and (symbolp fn-name)
;; (plist-worldp wrld))))
;; (acl2-getprop fn-name 'acl2::type-prescriptions wrld))
;if true then returns the type name (not the predicate)
;is true is Tp is a predicate and nth-T or *T-values* is defined in world
;Sig: Sym * World -> Sym
(defun is-custom-type-predicate (pred wrld)
(declare (xargs :verify-guards nil
:guard (and (symbolp pred)
(plist-worldp wrld)
)))
(let* ((typ (get-typesymbol-from-pred-P-naming-convention pred))
(values (modify-symbol "*" typ "-VALUES*"))
(enum (modify-symbol "NTH-" typ "")))
(if (plausible-predicate-functionp pred wrld)
(if (or (allows-arity enum 1 wrld) ;is enum defined in wrld
(acl2-getprop values 'acl2::const wrld)
;;or is values defined in wrld
)
typ ;THIS CAN BE NIL, if pred doesnt follow naming convention, works out well in any case
nil)
nil)))
;;is a predicate explicitly recognized in the defdata framework?
;;if true then returns the corresponding type
;; BUG here, with every change of type table, you might have to change this function
(defun is-datadef-type-predicate (fn-name typtable-alst)
(declare (xargs :verify-guards nil
:guard (and (symbolp fn-name)
(symbol-alistp typtable-alst))))
(if (endp typtable-alst)
nil
(b* (((cons typ info%) (car typtable-alst)))
(if (eq fn-name (acl2::access types-info% info% :predicate)) ;TODO: here for multiple pred aliases
typ
(is-datadef-type-predicate fn-name (cdr typtable-alst))))))
;is a possible type (ASK:should we also pick compound recognizers?)
;is either custom type pred or datadef pred
;if true then returns the type name (not the predicate)
;Sig: Sym * World -> Sym
(defun is-type-predicate-current (fn-name wrld)
(declare (xargs :verify-guards nil
:guard (and (symbolp fn-name)
(plist-worldp wrld))))
(or (is-datadef-type-predicate fn-name (table-alist 'types-info-table wrld));is in types table
(is-custom-type-predicate fn-name wrld)));is a custom type in the current world
(defun is-type-predicate-gv (fn w)
(ec-call (is-type-predicate-current fn w)))
(defattach is-type-predicate is-type-predicate-gv)
;Sig: Sym * State -> bool
;purpose: Check wether id is an identifier, which has not been previously defined as a type
(defun is-a-typeId-p (id wrld)
(declare (xargs :verify-guards nil
:guard (plist-worldp wrld)))
(and (is-a-variablep id)
(let ((typ-alst (table-alist 'types-info-table wrld))
(pred (get-predicate-symbol id)))
(and (not (assoc-eq id typ-alst))
(not (is-custom-type-predicate pred wrld))))))
;Sig: Sym * World -> Sym (typename)
;type has been defined using register-custom-type
(defun is-a-registered-custom-type (type wrld)
(declare (xargs :verify-guards nil))
(if (is-a-variablep type);shud be a variable symbol
(let* ((typ-alst (table-alist 'types-info-table wrld))
(typ-entry (assoc-eq type typ-alst)))
(if (and (consp typ-entry)
(not (acl2::access types-info% (cdr typ-entry) :derivedp)))
type ;if not derived by defdata but in the type table return type
nil))
nil))
;type has been defined using the defdata form
(defun is-a-defdata-type (type wrld)
(declare (xargs :verify-guards nil))
(if (is-a-variablep type);shud be a variable symbol
(let* ((typ-alst (table-alist 'types-info-table wrld))
(typ-entry (assoc-eq type typ-alst)))
(if (and (consp typ-entry)
(acl2::access types-info% (cdr typ-entry) :derivedp))
type ;if derived by defdata return type
nil))
nil))
;purpose: Check wether argument has been previously defined as a type
;using defdata or is clearly recognized by the defdata framework,
;i.e. it could also be a custom type which has been added into the
;types-info-table using register-custom-type. could also have been
;implemented in terms of is-datadef-type-predicate
(defun is-registered (type wrld)
(declare (xargs :verify-guards nil))
(if (is-a-variablep type);shud be a variable symbol
(let* ((typ-alst (table-alist 'types-info-table wrld))
(typ-entry (assoc-eq type typ-alst)))
(if (consp typ-entry)
type
nil))
nil))
;Sig: Sym * World -> Sym (typename)
;purpose: Check wether argument is a custom defined type and not a
;defdata pred
(defun is-a-custom-type-current (type wrld)
(declare (xargs :verify-guards nil))
(if (is-a-variablep type);shud be a variable symbol
(if (is-registered type wrld)
nil
(let ((pred (get-predicate-symbol type)))
(if (is-custom-type-predicate pred wrld) ;or is a custom type
type
nil)))
nil))
(defun is-a-custom-type-gv (type wrld)
(ec-call (is-a-custom-type-current type wrld)))
(defattach is-a-custom-type is-a-custom-type-gv)
;is either a defdata defined type or a custom typename
(defun is-a-typeName-current (type wrld)
(declare (xargs :verify-guards nil))
(or (is-registered type wrld)
(is-a-custom-type type wrld)))
(defun is-a-typeName-gv (type wrld)
(ec-call (is-a-typeName-current type wrld)))
(defattach is-a-typeName is-a-typeName-gv)
;------------------------------------------------------------------------
;User-controlled testing
;;;Per type syntax:
;;;(defdata-attach <type-name>
;;; :test-enumerator <enum-fn>
;;; :filter <filter-fn>
;;; ...)
;register the type by adding it into the types info table
(defmacro defdata-attach (typename &key test-enumerator)
":Doc-Section acl2::DATA-DEFINITIONS
Specify a custom testing enumerator for a type~/
~c[(defdata-attach T1 :test-enumerator nth-T1-testing)]
adds a user-specified enumerator to be used for randomly
generating values for type ~c[T1]. This can be used
to restrict the testing domain of any type for the
purposes of random testing.
~bv[]
Examples:
(defdata-attach nat :test-enumerator nth-nat-small-values)
(defdata-attach list :test-enumerator nth-list-test-small-lists) ;to test small lists
(defdata-attach character :test-enumerator *special-chars-only*) ;to test special chars
(defdata-attach foo :test-enumerator 999) ;restrict domain of foo to a singleton value
~ev[]
~bv[]
Usage:
(defdata-attach <Type-name1> :test-enumerator <test-enum>)
~ev[]~/
"
`(with-output
:stack :push
:off ,#!acl2(remove1-eq 'error *valid-output-names*)
(make-event
(er-let* ((type-info (table defdata::types-info-table ',typename)))
(if type-info
(value `(progn
,@(and ',test-enumerator
(make-enum-uniform-defun-ev
(modify-symbol "" ',test-enumerator "-UNIFORM")
',test-enumerator))
(table defdata::types-info-table
',',typename
(let* ((type-info (acl2::change types-info% ',type-info
:enumerator-test
',',test-enumerator))
(type-info (acl2::change types-info% type-info
:enum-uniform-test
',(modify-symbol "" ',test-enumerator "-UNIFORM"))))
type-info))
;TODO: check if table is good.
(value-triple (list ',',typename ',',test-enumerator))))
(er soft 'defdata-attach "~x0 is not a registered type. Use register-custom-type to register it.~%" ',typename))))))
#|
(defconst *foo1-values* '(1 2 3))
(defun foop (x)
(and (posp x)
(< x 4)))
(defconst *foo1-values-testing* '(1 2))
(include-book ;; fool dependency scanners
"graph")
(register-custom-type foo1 3 *foo1-values* foop nil)
(defdata-attach foo1 :test-enumerator *foo1-values-testing*)
|#
;is a new constuctor Id
(defun is-a-newconsId (id n wrld)
(declare (xargs :mode :program
:guard (and (symbolp id)
(natp n)
(plist-worldp wrld))))
(let ((conx-pred (get-predicate-symbol id)))
(if (and (is-a-identifier id wrld) ;this makes the following check redundant
(not (allows-arity id n wrld));not a predefined function or macro
(not (allows-arity conx-pred 1 wrld)));the corresponding pred is also not predefined
id
nil)))
;is a already existing constructor
(defun is-a-consId (id n wrld)
(declare (xargs :mode :program
:guard (and (symbolp id)
(natp n)
(plist-worldp wrld))))
(if (and (is-a-variablep id)
(allows-arity id n wrld));is a predefined constructor function with correct arity
id
nil))
(defrec supp-lemmas%
(set listof record oneof map)
NIL)
(defun supp-lemmas%-p (v)
(declare (xargs :guard T))
(case-match v
(
('supp-lemmas% set listof record oneof map)
(and (true-listp set)
(true-listp listof)
(true-listp record)
(true-listp oneof)
(true-listp map)))))
(defconst *initial-supp-lemmas*
(acl2::make supp-lemmas%
:set '()
:listof '()
:record '()
:map '()
:oneof '()))
;defdata temp storage
(defrec ds%
(defdata-world
newconstructors
support-lemmas ;(satisfies supp-lemmas%-p)
custom-types
defdata-debug
type-class ;(satisfies type-class-p) :initially :undefined)
record-constituents
product-constituents
union-constituents
is-recursive
) NIL)
;Ideally write a macro to generate these forms
(defmacro add-record-constituent-types-to-ds$ (type)
`(acl2::change ds% ds$ :record-constituents (cons ,type (acl2::access ds% ds$ :record-constituents))))
(defmacro add-product-constituent-types-to-ds$ (type)
`(acl2::change ds% ds$ :product-constituents (cons ,type (acl2::access ds% ds$ :product-constituents))))
(defmacro add-union-constituent-types-to-ds$ (type)
`(acl2::change ds% ds$ :union-constituents (cons ,type (acl2::access ds% ds$ :union-constituents))))
(defmacro add-custom-types-to-ds$ (type)
`(acl2::change ds% ds$ :custom-types (cons ,type (acl2::access ds% ds$ :custom-types))))
(defmacro add-newconstructor-to-ds$ (cons-info)
`(acl2::change ds% ds$ :newconstructors (cons ,cons-info (acl2::access ds% ds$ :newconstructors))))
;add generated constructor information in a record to a temporary
;global variable changed pred-body-lst to pred-lst since only
;typenames are allowed not type expressions.
;July 8 2010, this was checked with the datadef syntax document
;June 26 2011, changed to ds$ transient/temp storage stobj for defdata
(defun add-newconstructor (newconsid dex pred-lst ds$)
(declare (xargs :mode :program))
(let ((new-constructor-info
(cons newconsid (list* (list ':generated ':proper)
(get-predicate-symbol newconsid)
(cons-up-lists dex pred-lst)
'none))))
(add-newconstructor-to-ds$ new-constructor-info)))
(defun update-type-class-top-level$ (tc nm ds$)
(declare (xargs :guard (and (type-class-p tc)
(symbolp nm)
)
:verify-guards nil))
(declare (ignorable nm))
(let ((current-tc (acl2::access ds% ds$ :type-class)))
(cond ((eq current-tc :undefined)
(let ((ds$ (acl2::change ds% ds$ :type-class tc)))
ds$))
((and (consp current-tc)
(eq (car current-tc) 'acl2::mutually-recursive))
(b* ((alst (cdr current-tc))
(entry (assoc-eq nm alst))
(ctx 'update-type-class-top-level$)
((when (null entry)) (prog2$ (er hard ctx "~| ~x0 not found in ~x1~|" nm alst) ds$))
((unless (and (consp entry)
(eq (cdr entry) :undefined))) ds$)
(alst~ (put-assoc-eq nm tc alst))
(ds$ (acl2::change ds% ds$ :type-class (cons 'acl2::mutually-recursive alst~))))
ds$))
(t ds$))))
(program)
;is dexpair a destructor type declaration
(defun trans-dest-type-decl (conx-name dexpair tnames ctx ds$)
(b* (((unless (consp dexpair))
(prog2$
(er hard ctx "~x0 destructor type decl should be a cons. ~%" dexpair)
(mv t nil ds$)))
(conx-prefix-str (string-append (symbol-name conx-name) "-"))
(id-name (modify-symbol conx-prefix-str (car dexpair) ""))
(id (is-a-identifier id-name (acl2::access ds% ds$ :defdata-world)))
(dte (cdr dexpair))
((unless id)
(prog2$
(er hard ctx "~x0 is a bad choice for a field name in ~x1.~
Choose something different~%" (car dexpair) dexpair)
(mv t nil ds$)))
;strip away the destructor information for uniform product data treatment
((when (is-registered dte (acl2::access ds% ds$ :defdata-world)))
(let ((ds$ (if (not (eq 'acl2::union (acl2::access ds% ds$ :type-class)))
;check if we are not inside union
(add-record-constituent-types-to-ds$ dte)
ds$)))
(mv nil dte ds$)))
((when (mem1 dte tnames))
(let ((ds$ (acl2::change ds% ds$ :is-recursive 't)))
(mv nil dte ds$)));recursive type reference
((unless (is-a-custom-type dte (acl2::access ds% ds$ :defdata-world)))
(prog2$
(er hard ctx "~x0 should be a type name. ~%" dte)
(mv t nil ds$)))
;Custom type (only remaining case)
;add custom types used in defdata form to be validated later
(ds$ (if (not (eq 'acl2::union (acl2::access ds% ds$ :type-class)))
;check if we are not inside union
(add-record-constituent-types-to-ds$ dte)
ds$))
;July 9 2011
;TODO NOTE: I do add the constituents, but I generate the
;disjoint theorems only when the original expression is a
;purely product expression and I have an handle on its names!!
;So this is fluff code for the moment, if we are inside a union
(ds$ (add-custom-types-to-ds$ dte)))
(mv nil dte ds$)))
;check and construct(stripping away destructors) dex-pair list
(defun trans-dest-typ-decl-lst (conx-name dex-pairs tnames ctx ds$)
(if (symbol-alistp dex-pairs)
(if (endp dex-pairs)
(mv nil nil ds$)
(b* (((mv erp dest-decl ds$)
(trans-dest-type-decl conx-name (car dex-pairs) tnames ctx ds$))
((when erp)
(prog2$
(er hard ctx "Bad ~x0~%" (car dex-pairs))
(mv t nil ds$)))
((mv & dest-decl-lst ds$)
(trans-dest-typ-decl-lst conx-name (cdr dex-pairs) tnames ctx ds$))
)
(mv nil (cons dest-decl dest-decl-lst) ds$)))
(prog2$
(er hard ctx
"Destructor type decl list ~x0 should be a symbol-alist. ~%"
dex-pairs)
(mv t nil ds$))))
(mutual-recursion
;; checks wether texp is a constituent type:
;; Either typeName | SingletonType | Union-or-Prod-type
;; if it isnt then give syntax error.
;; The reason why its a soft syntax error? (not the case anymore)
;; rather than a nil is
;; that all calls to this function occur from inside
;; either a union or prod function which occurs last
;; in the series of syntax check and so if its not a
;; union or prod then its not legal syntax.
(defun trans-constituent-type (texp typid tnames ctx ds$)
(b* (((when (is-singleton-type-p texp))
(mv nil texp ds$))
((when (is-registered texp (acl2::access ds% ds$ :defdata-world)))
(let ((ds$
(case (acl2::access ds% ds$ :type-class)
('acl2::product (add-product-constituent-types-to-ds$ texp))
('record (add-record-constituent-types-to-ds$ texp))
;might be buggy, right now im not supporting union constituents
(otherwise (add-union-constituent-types-to-ds$ texp)))))
(mv nil texp ds$)))
((when (is-a-custom-type texp (acl2::access ds% ds$ :defdata-world)))
(let* ((ds$ (add-custom-types-to-ds$ texp))
(ds$
(case (acl2::access ds% ds$ :type-class)
('acl2::product (add-product-constituent-types-to-ds$ texp))
('record (add-record-constituent-types-to-ds$ texp))
;might be buggy, right now im not supporting union constituents
(otherwise (add-union-constituent-types-to-ds$ texp)))))
(mv nil texp ds$)))
((when (mem1 texp tnames))
(let ((ds$ (acl2::change ds% ds$ :is-recursive 't)))
(mv nil texp ds$)));is a recursive type reference
((unless (consp texp))
(prog2$
(er hard ctx "~x0 is an illegal Constituent type expression,
expecting either previously ~
defined typeName, Singleton or Union/Product type here~%" texp )
(mv t nil ds$)))
((mv erp texp1 ds$)
(trans-prod-or-union-type texp typid tnames ctx ds$))
((unless (and (not erp) texp1))
(prog2$
(er hard ctx "~x0 is an illegal Constituent type expression, expecting either ~
previously defined typeName, Singleton or Union/Product type here~%" texp )
(mv t nil ds$))))
(mv nil texp1 ds$)))
;check and construct the constituent type list
(defun trans-constituent-type-lst (texp-lst typid tnames ctx ds$)
(if (endp texp-lst)
(mv nil nil ds$)
(b* (((mv erp1 ctype1 ds$)
;ignore errors since they will already be caught. Hard errors!! save typing
(trans-constituent-type (car texp-lst) typid tnames ctx ds$))
((mv erp2 ctype-lst1 ds$)
(trans-constituent-type-lst (cdr texp-lst) typid tnames ctx ds$)))
(mv (or erp1 erp2) (cons ctype1 ctype-lst1) ds$))))
;;; if texp is a union expression then check and preprocess
;;; the argument constituent type expressions
;;; otherwise give nil, dont give any errors, cos we still
;;; have product expression in the sequential check left
(defun trans-union-type-exp (texp typid tnames ctx ds$)
(declare (xargs :guard (consp texp)))
(b* (((unless (and (consp texp)
(or (eq (car texp) 'oneof)
(eq (car texp) 'anyof))))
(mv nil nil ds$))
;it is a union expression
((unless (> (len (cdr texp)) 1))
(prog2$
(er hard ctx "Union type expression ~x0 should have at least 2 constituent types~%" texp)
(mv t nil ds$)))
(ds$ (update-type-class-top-level$ 'acl2::union typid ds$))
((mv erp texp-lst1 ds$)
(trans-constituent-type-lst (cdr texp) typid tnames ctx ds$)))
(mv erp (cons (car texp) texp-lst1) ds$))) ;reconstruct
(defun trans-product-type-exp (texp typid tnames ctx ds$)
(declare (xargs :guard (consp texp)))
(b* (((when (and (consp texp)
(or (eq (car texp) 'oneof)
(eq (car texp) 'anyof))))
;is an union, so return nil (indicating not a product)
(mv nil nil ds$))
(consid (is-a-consId (car texp) (len (cdr texp))
(acl2::access ds% ds$ :defdata-world)))
((when consid)
(mv-let (erp ctype-lst1 ds$)
(let ((ds$ (update-type-class-top-level$ 'acl2::product typid ds$)))
;only updates if top-level-call from translate-defbody
(trans-constituent-type-lst (cdr texp) typid tnames ctx ds$))
(mv erp (cons consid ctype-lst1) ds$))) ;reconstruct
(newconsid (is-a-newconsId (car texp) (len (cdr texp))
(acl2::access ds% ds$ :defdata-world)))
((unless newconsid)
(prog2$
(er hard ctx "~|~x0 is an illegal Constructor id~|" (car texp))
(mv t nil ds$)))
(dest-decl-lst (cdr texp))
(dex (strip-cars dest-decl-lst))
(dex-types (strip-cdrs dest-decl-lst))
(pred-lst (get-predicate-symbol-lst dex-types))
;only update if top-level call
(ds$ (update-type-class-top-level$ 'record typid ds$))
((mv erp ct-lst1 ds$)
;get stripped constituent types
(trans-dest-typ-decl-lst newconsid dest-decl-lst tnames ctx ds$))
((unless (not erp))
(prog2$
(er hard ctx "Malformed destructor declarations~%")
(mv t nil ds$)))
(ds$ (add-newconstructor newconsid dex pred-lst ds$)))
(mv nil (cons newconsid ct-lst1) ds$)))
(defun trans-prod-or-union-type (texp typid tnames ctx ds$)
;returns (mv erp trans-texp ds$)
(declare (xargs :guard (consp texp)))
(b* (((mv erp un-texp ds$)
(trans-union-type-exp texp typid tnames ctx ds$)))
(if (and (not erp)
un-texp)
(mv nil un-texp ds$)
;SOLVED BUG: order is important
(trans-product-type-exp texp typid tnames ctx ds$))))
)
;;check well-foundedness (dead code now 04/07/2013)
(mutual-recursion
(defun WF-constituent-type (texp tnames rpath ctx)
(cond ((is-singleton-type-p texp) 't);singleton type exp is well-founded
((symbolp texp) 't);previosly defined types are well-founded
((mem1 texp tnames)
(if (mem1 'P rpath)
'nil;is a recursive type reference, i.e. not well-founded
;but if this reference occurs inside a union type expression, that is illegal, raise error!
(er hard? ctx "Not Well-formed: Recursive reference ~x0 should occur within a outer Product type expression~%" texp)))
(t (WF-prod-or-union-type texp tnames rpath ctx ))))
(defun WF-product-constituent-type-lst (texp-lst tnames rpath ctx )
(if (endp texp-lst)
't
(and (WF-constituent-type (car texp-lst) tnames rpath ctx )
(WF-product-constituent-type-lst (cdr texp-lst) tnames rpath ctx ))))
(defun WF-union-constituent-type-lst (texp-lst tnames rpath ctx )
(if (endp texp-lst)
'nil
(or (WF-constituent-type (car texp-lst) tnames rpath ctx )
(WF-product-constituent-type-lst (cdr texp-lst) tnames rpath ctx ))))
(defun WF-dest-type-decl (dexpair tnames rpath ctx )
(WF-constituent-type (cdr dexpair) tnames rpath ctx ))
(defun WF-dest-typ-decl-lst (dex-pairs tnames rpath ctx )
(if (endp dex-pairs)
't
(and (WF-dest-type-decl (car dex-pairs) tnames rpath ctx )
(WF-dest-typ-decl-lst (cdr dex-pairs) tnames rpath ctx ))))
(defun WF-union-type-exp (texp tnames rpath ctx )
(if (or (eq (car texp) 'oneof) (eq (car texp) 'anyof))
(WF-union-constituent-type-lst (cdr texp) tnames (cons 'U rpath) ctx )
nil))
(defun WF-product-type-exp (texp tnames rpath ctx )
(if (symbolp (car texp));cons-id
(WF-product-constituent-type-lst (cdr texp) tnames (cons 'P rpath) ctx )
(WF-dest-typ-decl-lst (cdr texp) tnames (cons 'P rpath) ctx )))
(defun WF-prod-or-union-type (texp tnames rpath ctx )
(or (WF-union-type-exp texp tnames rpath ctx )
(WF-product-type-exp texp tnames rpath ctx )))
)
;preprocessing
;(enum <expr-evals-to-a-list-of-constants>)
(defun is-enum-type (texp ctx w)
;returns trans-enum, where trans-enum is nil if texp is
;not an enum type expression
(declare (xargs :guard (plist-worldp w)))
(b* (((unless (and (consp texp)
(eq (car texp) 'enum)))
nil)
;Is an enum
((unless (and (= 2 (len texp))
(possible-constant-value-expressionp (cadr texp))))
(er hard ctx "Enum should be of form (enum <list-expr>) where ~
list-expr is a constant value expression evaluating to a list of objects.~%"))
((mv erp list-val)
(trans-my-ev-w (cadr texp) ctx w nil))
((when erp)
(er hard ctx "Evaluating list expression ~x0 failed!~%" (cadr texp)))
((unless (true-listp list-val))
(er hard ctx "Enum ~x0 expected a (true-) list expression.~%" texp)))
(list 'enum list-val)))
;; Added range type syntactic sugar on 11 March 2014
(deflabel range)
(set-ignore-ok t)
(defun is-range-type (texp)
; returns range in normal form, returns nil if not range, but ill-formed ranges
; are returned as is, for error to be raised in process-range-form.
(if (and (consp texp)
(eq (car texp) 'range))
(case-match texp
(('range 'integer rexp)
(case-match rexp
((lo '< '_ '< hi) texp)
((lo '< '_ '<= hi) texp)
((lo '<= '_ '< hi) texp)
((lo '<= '_ '<= hi) texp)
((lo '< '_) `(range integer (,lo < _ < nil)))
(('_ '< hi) `(range integer (nil < _ < ,hi)))
((lo '<= '_) `(range integer (,lo <= _ < nil)))
(('_ '<= hi) `(range integer (nil < _ <= ,hi)))
(& texp))) ;raise error later
(('range 'rational rexp)
(case-match rexp
((lo '< '_ '< hi) texp)
((lo '< '_ '<= hi) texp)
((lo '<= '_ '< hi) texp)
((lo '<= '_ '<= hi) texp)
((lo '< '_) `(range rational (,lo < _ < nil)))
(('_ '< hi) `(range rational (nil < _ < ,hi)))
((lo '<= '_) `(range rational (,lo <= _ < nil)))
(('_ '<= hi) `(range rational (nil < _ <= ,hi)))
(& texp)))
(& texp)) ;raise error later
nil))
(set-ignore-ok nil)
; keep in sync with code in main.lisp for function make-range-enum-info%.
; Added 11 March 2014.
; NOTE that the second argument has a different type here.
(defun make-enumerator-body-for-range (domain tau-interval)
(b* ((lo (tau-interval-lo tau-interval))
(hi (tau-interval-hi tau-interval))
(lo-rel (tau-interval-lo-rel tau-interval))
(hi-rel (tau-interval-hi-rel tau-interval)))
(case domain
(acl2::integer (let ((lo (and lo (if lo-rel (1+ lo) lo))) ;make both inclusive bounds
(hi (and hi (if hi-rel (1- hi) hi))))
(cond ((and lo hi)
`(acl2::nth-integer-between r ,lo ,hi))
(lo ;hi is positive infinity
`(+ ,lo r))
((posp hi) ;lo is neg infinity and hi is >=1
`(let ((i-ans (acl2::nth-integer r)))
(if (> i-ans ,hi)
(mod i-ans (1+ ,hi))
i-ans)));ans shud be less than or equal to hi
(t ;lo is neg inf, and hi is <= 0
`(- ,hi r))))) ;ans shud be less than or equal to hi
(otherwise (cond ((and lo hi) ;ASSUME inclusive even when you have exclusive bounds
`(acl2::nth-rational-between r ,lo ,hi))
(lo ;hi is positive infinity
`(+ ,lo (acl2::nth-positive-rational r)))
((> hi 0) ;lo is neg infinity and hi is is >= 1
`(let ((rat-ans (acl2::nth-rational r)))
(if (> rat-ans ,hi)
(mod rat-ans (1+ ,hi))
rat-ans)));ans shud be less than or equal to hi
(t;lo is neg infinity and hi is is <= 0
`(- ,hi (acl2::nth-positive-rational r))))))))
(defun compute-range-type-events (nm psym esym rexp ctx wrld)
(declare (ignorable wrld) (xargs :mode :program))
(case-match rexp
(('range domain (lo-sym lo-rel-sym '_ hi-rel-sym hi-sym))
(b* ((lo-rel (eq lo-rel-sym '<))
(hi-rel (eq hi-rel-sym '<))
((mv erp hi)
(trans-my-ev-w hi-sym ctx wrld nil))
((when erp)
(er hard ctx "Evaluating rational expression ~x0 failed!~%" hi-sym))
((mv erp lo)
(trans-my-ev-w lo-sym ctx wrld nil))
((when erp)
(er hard ctx "Evaluating rational expression ~x0 failed!~%" lo-sym))
((unless (and (or (null lo) (if (eq domain 'integer) (integerp lo) (rationalp lo)))
(or (null hi) (if (eq domain 'integer) (integerp hi) (rationalp hi)))))
(er hard ctx "~|Syntax error: lo and hi in range expressions should evaluate to rationals, ~
but instead got lo=~x0 and hi=~x1~%" lo hi))
(dom (if (eq domain 'integer)
'acl2::integerp
'acl2::rationalp))
((mv lo lo-rel) (if (eq domain 'integer)
(if (and lo lo-rel)
(mv (+ lo 1) nil)
(mv lo nil))
(mv lo lo-rel)))
((mv hi hi-rel) (if (eq domain 'integer)
(if (and hi hi-rel)
(mv (- hi 1) nil)
(mv hi nil))
(mv hi hi-rel)))
(tau-int (acl2::make-tau-interval dom lo-rel lo hi-rel hi))
((unless (acl2::tau-intervalp tau-int))
(er hard? ctx
"~|Range ~x0 not a tau-interval~%" rexp))
(size t)) ;FIXME this is just approximate. But table guard disallows an enum with finite size anyway!
(list
`(defun ,psym (x)
(declare (xargs :guard t))
(acl2::in-tau-intervalp x ',tau-int))
`(defun ,(get-enumerator-symbol nm) (r)
(declare (xargs :guard (natp r)))
,(make-enumerator-body-for-range domain tau-int))
`(register-custom-type ,nm ,size ,esym ,psym
:type-class range))))))
(defun process-range-form (defs ctx wrld)
(declare (xargs :mode :program))
(b* (((when (> (len defs) 1)) ;;mutually recursive
(let ((defbodies (strip-cadrs defs)))
(if (and (true-list-listp defbodies)
(member-eq 'range (strip-cars defbodies)))
(er hard? ctx
"Syntax error in use of range: Range types cannot appear ~
in mutually recursive definitions.~%")
nil)))
(def (car defs)) ;;single def
(name (car def))
(rbody (cadr def))
(rlen (len rbody))
((unless (consp rbody)) nil)
((unless (eq 'range (car rbody))) nil)
((unless (and (= rlen 3)
(member-eq (cadr rbody) '(integer rational))
(= 5 (len (caddr rbody)))
;;(lo '< '_ '< hi)
(eq (third (caddr rbody)) '_)
(member-eq (second (caddr rbody)) '(< <=))
(member-eq (fourth (caddr rbody)) '(< <=))))
(er hard? ctx
"~|Syntax error: Range ~x0 should be of following form: ~
~| (defdata <id> (range (integer (lo < _ < hi)))) or ~
~| (defdata <id> (range (rational (lo < _ < hi)))) ~
~| <= can also be used in place of < and ~
~| one of the bounds can be dropped.~%" rbody)))
(append
(compute-range-type-events name
(get-predicate-symbol name)
(get-enumerator-symbol name)
rbody ctx wrld)
`((value-triple ',name)))))
#|
(defmacro define-map-list-lambda-fn (nm lambda-fn &key guard)
`(make-event
(defun ,nm
,@(if guard
'((declare (xargs :guard guard)))
nil)
(if (endp lst)
nil
(cons
|#
(defun map-get-field-name (dnames)
(declare (xargs :guard (symbol-listp dnames)))
(if (endp dnames)
nil
(cons (intern (symbol-name (car dnames)) "KEYWORD")
(map-get-field-name (cdr dnames)))))
(defun get-typesymbol-from-pred (sym wrld)
(b* ((typ (get-typesymbol-from-pred-P-naming-convention sym))
(types-info-table (table-alist 'types-info-table wrld))
(entry (assoc-eq typ types-info-table))
(naming-consistent? (and (consp entry)
(eq sym (acl2::access types-info% (cdr entry) :predicate))))
((when naming-consistent?) typ)
(ans (is-datadef-type-predicate sym types-info-table)))
(if ans
ans
(er hard 'get-typesymbol-from-pred "~x0 doesnt follow our convention of predicates ending with 'p'.~%" sym))))
(defun len-<-0-syms (syms)
(declare (xargs :guard (symbol-listp syms)))
;:VERIFY-GUARDS NIL))
(if (endp syms)
't
(and (if (symbolp (car syms)) 't 'nil)
(< 0 (length (symbol-name (car syms))))
(len-<-0-syms (cdr syms)))))
(defun get-typesymbol-from-pred-lst (syms wrld)
(declare (xargs :guard (and (symbol-listp syms)
(len-<-0-syms syms))))
(if (endp syms)
nil
(let ((type (get-typesymbol-from-pred (car syms) wrld)))
(if type ;it might be NIL (Ideally it shud be an ERROR??)
(cons type
(get-typesymbol-from-pred-lst (cdr syms) wrld))
(get-typesymbol-from-pred-lst (cdr syms) wrld)))))
;TODO: wherever you use get-predicate-symbol, you should check for
;the non-syntactic restricted version from names-info-table
(defun runes-to-be-disabled1 (names wrld ans)
(if (endp names)
ans
(b* ((name (car names)))
(if (acl2::rule-name-designatorp name nil wrld);filter runes
(runes-to-be-disabled1 (cdr names) wrld (cons name ans))
(runes-to-be-disabled1 (cdr names) wrld ans)))))
(defun runes-to-be-disabled (names wrld)
(remove-duplicates (runes-to-be-disabled1 names wrld '())))
(defun make-generic-record-implies-consp/good-map-ev (conx-name dex-pairs wrld)
(declare (xargs :guard (and (symbolp conx-name)
(symbol-alistp dex-pairs))))
(b* ((dex-orig-names (strip-cars dex-pairs))
(prefix (string-append (symbol-name conx-name) "-"))
(dex-names (modify-symbol-lst prefix dex-orig-names "")) ;make new prefixed destr names
(dex-preds (strip-cdrs dex-pairs))
(dex-var-names (modify-symbol-lst "VAR" dex-names ""))
(dex-bindings (build-dex-recordImpl-bindings dex-orig-names dex-var-names 'v))
(conx-pred (get-predicate-symbol conx-name))
(disabled (runes-to-be-disabled dex-preds wrld)))
`((encapsulate
()
(value-triple
(prog2$
(time-tracker :defdata-generic-record-lemmas :start)
:invisible))
(local
(progn
(in-theory (enable ,conx-pred))
(defthm ,(modify-symbol "" conx-name "-IMPLIES1-LEMMA")
(implies (,conx-pred v)
(equal (EQUAL v ,(cons conx-name (strip-cadrs dex-bindings)));(mget :key x) (mget :LEVEL x) (mget :LEFT x) (mget :RIGHT x)))
t))
:hints (("Goal" :in-theory (disable . ,disabled)))
:rule-classes (:forward-chaining))
(defthm ,(modify-symbol "" conx-name "-IMPLIES2-LEMMA")
(implies (EQUAL x ,(cons conx-name dex-names));AA-KEY AA-LEVEL AA-LEFT AA-RIGHT))
(mget 'DEFDATA::CONSTRUCTOR x)))
(defthm ,(modify-symbol "" conx-name "-IS-CONSP-LEMMA");node-is-consp-lemma
(implies (,conx-pred x)
(mget 'DEFDATA::CONSTRUCTOR x))
:hints (("goal" :in-theory (e/d () (,@disabled))))
:rule-classes (:forward-chaining))
(in-theory (disable ,conx-pred))))
(value-triple
(prog2$
(time-tracker :defdata-generic-record-lemmas :print?)
:invisible))
(defthm ,(modify-symbol "" conx-name "-UNIQUE-TAG")
(implies (,conx-pred x)
(equal (mget 'defdata::constructor x) ',conx-name))
:hints (("goal" :expand ((,conx-pred x))
:in-theory (e/d () (,@disabled))))
:rule-classes ((:rewrite :backchain-limit-lst 1)
:forward-chaining :type-prescription))
(defthm ,(modify-symbol "" conx-name "-IMPLIES-CONSP")
(implies (,conx-pred x)
(consp x))
:rule-classes ((:rewrite :backchain-limit-lst 1)
:forward-chaining :compound-recognizer))
(defthm ,(modify-symbol "" conx-name "-IMPLIES-GOOD-MAP")
(implies (,conx-pred x)
(acl2::good-map x))
:hints (("goal" :in-theory (e/d (,conx-pred))))
:rule-classes ((:rewrite :backchain-limit-lst 1)
(:forward-chaining)))
(defthm ,(modify-symbol "" conx-name "-EXCLUDES-ATOM-LIST")
(implies (,conx-pred x)
(not (atom-listp x)))
:hints (("goal" :in-theory (e/d (,conx-pred) (,@disabled))))
:rule-classes (:tau-system))
(value-triple
(progn$
(time-tracker :defdata-generic-record-lemmas :print?)
(time-tracker :defdata-generic-record-lemmas :stop)
:invisible))
;; (defthm ,(modify-symbol "" conx-name "-IMPLIES-PROPER-CONS/ALIST")
;; (implies (,conx-pred x)
;; (and (proper-consp x)
;; (alistp x)))
;; :hints (("goal" :in-theory (e/d (,conx-pred))))
;; :rule-classes (:tau-system))
))))
;cons-up calls of above function
(defun cons-up-record-implies-consp/good-map-ev (conx-names dex-pairs-lst wrld)
(declare (xargs :guard (and (symbol-listp conx-names)
(true-list-symbol-alistp dex-pairs-lst)
(= (len conx-names) (len dex-pairs-lst)))))
(if (endp conx-names)
nil
(append (make-generic-record-implies-consp/good-map-ev (car conx-names) (car dex-pairs-lst) wrld)
(cons-up-record-implies-consp/good-map-ev (cdr conx-names) (cdr dex-pairs-lst) wrld))))
(defun record-selector-lemmas (nms tpred fnames dprex disabled)
(if (endp fnames)
(list '(value-triple
(prog2$
(time-tracker :defdata-record-lemmas :print?)
:invisible)))
(cons
`(defthm ,(car nms)
(implies (,tpred x)
(,(car dprex) (mget ,(car fnames) x)))
:hints (("Goal" :in-theory (e/d (,tpred) (,@disabled))))
:rule-classes (:rewrite
(:forward-chaining
:trigger-terms ((mget ,(car fnames) x)))))
(record-selector-lemmas (cdr nms) tpred (cdr fnames) (cdr dprex) disabled))))
(defun record-modifier-lemmas (nms tpred fnames dprex disabled wrld)
(if (endp fnames)
(list '(value-triple
(prog2$
(time-tracker :defdata-record-lemmas :print?)
:invisible)))
(b* ((dpred (car dprex))
(ctx 'record-modifier-lemmas)
((mv erp contains-nilp)
(trans-my-ev-w (list dpred 'nil) ctx wrld nil)))
(if (or erp contains-nilp)
(record-modifier-lemmas (cdr nms) tpred (cdr fnames) (cdr dprex) disabled wrld)
(cons `(defthm ,(car nms)
(implies (and (,tpred x)
(,(car dprex) v))
(,tpred (mset ,(car fnames) v x)))
:hints (("Goal" :in-theory (e/d (,tpred) (,@disabled))))
:rule-classes (:rewrite
(:forward-chaining
:trigger-terms ((mset ,(car fnames) v x)))))
(record-modifier-lemmas (cdr nms) tpred (cdr fnames) (cdr dprex) disabled wrld))))))
(defun is-subtype (T1 T2 wrld)
"subtype check for tau database"
(declare (xargs :guard (and (symbolp T1)
(symbolp T2)
(plist-worldp wrld))))
(cond ((eq T2 'acl2::all) t)
((eq T1 'acl2::empty) t)
((eq T1 T2) t) ;trivial
;ASSUMPTION: Types equivalent to all and empty should be recognized
;separately. In this function, we simply return nil, so we can have false
;positives.
((eq T2 'acl2::empty) nil)
((eq T1 'acl2::all) nil)
(t
(b* ((typ-alst (table-alist 'types-info-table wrld))
(typ-entry1 (assoc-eq T1 typ-alst))
(typ-entry2 (assoc-eq T2 typ-alst))
((unless (and (consp typ-entry1) (consp typ-entry2))) nil)
(P1 (acl2::access types-info% (cdr typ-entry1) :predicate))
(P2 (acl2::access types-info% (cdr typ-entry2) :predicate)))
(subtype-p P1 P2 wrld)))))
(defun is-disjoint (T1 T2 wrld)
"disjoint check for tau database"
(declare (xargs :guard (and (symbolp T1)
(symbolp T2)
(plist-worldp wrld))))
(cond ((or (eq T1 'acl2::all) (eq T2 'acl2::all) nil))
((or (eq T1 'acl2::empty) (eq T1 'acl2::empty)) t)
((eq T1 T2) nil) ;trivial
;ASSUMPTION: Types equivalent to all and empty should be recognized
;separately.
(t
(b* ((typ-alst (table-alist 'types-info-table wrld))
(typ-entry1 (assoc-eq T1 typ-alst))
(typ-entry2 (assoc-eq T2 typ-alst))
((unless (and (consp typ-entry1) (consp typ-entry2))) nil)
(P1 (acl2::access types-info% (cdr typ-entry1) :predicate))
(P2 (acl2::access types-info% (cdr typ-entry2) :predicate)))
(disjoint-p P1 P2 wrld)))))
(defun is-alias (T1 T2 wrld)
(declare (xargs :guard (and (symbolp T1)
(symbolp T2)
(plist-worldp wrld))))
(and (is-subtype T1 T2 wrld)
(is-subtype T2 T1 wrld)))
;; (defun is-subtype (T1 T2 R$ types-ht$)
;; "conservative subtype check, return false if T1 or T2 are not present in graph"
;; (declare (xargs :guard (and (R$p R$)
;; (types-ht$p types-ht$))
;; :stobjs (R$ types-ht$)))
;; (cond ((eq T2 'acl2::all) t)
;; ((eq T1 'acl2::empty) t)
;; ;ASSUMPTION: Types equivalent to all and empty should be recognized
;; ;separately. In this function, we simply return nil, so we can have false
;; ;positives.
;; ((eq T2 'acl2::empty) nil)
;; ((eq T1 'acl2::all) nil)
;; (t
;; (if (and (vertex-ht-valid-p T1 (rgraph-length R$) types-ht$)
;; (vertex-ht-valid-p T2 (rgraph-length R$) types-ht$))
;; (is-subtype$$ T1 T2 R$ types-ht$)
;; nil))))
;; (defun is-alias (T1 T2 R$ types-ht$)
;; (declare (xargs :guard (and (R$p R$)
;; (types-ht$p types-ht$))
;; :stobjs (R$ types-ht$)))
;; (and (is-subtype T1 T2 R$ types-ht$)
;; (is-subtype T2 T1 R$ types-ht$)))
; 13 July 2013 -- equiv enum and oneof defs of Lett dont work
; equivalently for disjoint lemmas:
#||
(defdata Lett (enum '(a b c d)) :type-lemmas t)
(defdata Lett1 (oneof 'a 'b 'c 'd) :type-lemmas t)
(LETTP (RECOGNIZER-INDEX 330)
(POS-IMPLICANTS (AND (LETTP V) (NOT (RECP V))))
(NEG-IMPLICANTS (NOT (LETTP V)))
(SIGNATURES (BOOLEANP (LETTP V)))
(BIG-SWITCH? :NO)
(MV-NTH-SYNONYM? :NO))
||#
; both have same tau-data, but defdata rec works in second def but not
; not first. the disjoint lemma fails.
; Q: How does tau-system discharge the obligation in one case and
; not the other?
;; (defun record-disjoint-constituent-lemmas (nms tpred dex-types R$ types-ht$)
;; (declare (xargs :stobjs (R$ types-ht$)))
;; (if (endp nms)
;; (list '(value-triple
;; (prog2$
;; (time-tracker :defdata-record-lemmas :print?)
;; :invisible)))
;; (append
;; (b* ((dex-type (car dex-types))
;; (dpred (get-predicate-symbol dex-type))
;; ; bugfix defdata-record-all-field-bug
;; ((when (or (is-alias dex-type 'acl2::all R$ types-ht$)
;; (is-alias dex-type 'acl2::cons R$ types-ht$)
;; (is-alias dex-type 'acl2::list R$ types-ht$)
;; (is-alias dex-type 'acl2::alist R$ types-ht$)
;; (is-alias dex-type 'acl2::acons R$ types-ht$)
;; (is-alias dex-type 'acl2::true-list R$ types-ht$)
;; ;; TODO
;; ;; 16 July 2013 - due to example from mitesh
;; ;; the disjoint lemma generation is nowhere near
;; ;; complete
;; (is-subtype dex-type 'acl2::true-list R$ types-ht$)))
;; '()))
;; `((defthm ,(car nms)
;; (implies (,tpred x)
;; (not (,dpred x)))
;; :hints (("Goal" :in-theory (e/d (,dpred) (,tpred )))))))
;; (record-disjoint-constituent-lemmas (cdr nms) tpred (cdr dex-types) R$ types-ht$))))
(defun record-constructor-lemma (nm cname tpred dprex vnames disabled)
`(defthm ,nm ;TODO: of no use if cname is not disabled!
(implies (and ,@(build-one-param-calls dprex vnames))
(,tpred (,cname . ,vnames)))
:hints (("Goal" :in-theory (e/d (,tpred ,cname) (,@disabled acl2::mset-diff-mset))))))
;find recursive records
(defun find-recursive-record (pred new-constructors)
(declare (xargs :mode :program
:guard (and (symbolp pred)
(symbol-alistp new-constructors))))
(if (endp new-constructors)
nil
(let* ((conx-info (car new-constructors))
(dex-pairs (dex-pairs-entry conx-info)))
(if (member-eq pred (flatten (strip-cdrs dex-pairs) '()));TODO.BUG: simple trick, but may give false positives
(cons conx-info (find-recursive-record pred (cdr new-constructors)))
(find-recursive-record pred (cdr new-constructors))))))
;TODO::Check if a mutually recursive record is possible and test it.
(defun find-recursive-records (preds new-constructors)
(declare (xargs :mode :program
:guard (and (symbol-listp preds)
(symbol-alistp new-constructors))))
(if (endp preds)
nil
(let ((rrecs (find-recursive-record (car preds) new-constructors)))
(if rrecs
(union-equal rrecs
(find-recursive-records (cdr preds) new-constructors))
(find-recursive-records (cdr preds) new-constructors)))))
(defun add-record-type-support-lemmas-to-ds$ (typid dnames dex-types ds$)
(b* ((tpred (get-predicate-symbol typid))
(dprex (get-predicate-symbol-lst dex-types))
(s-lemm (acl2::access ds% ds$ :support-lemmas))
(fnames (map-get-field-name dnames))
(snms (modify-symbol-lst (string-append (symbol-name tpred) "-")
dnames "-SELECTOR-LEMMA"))
(mnms (modify-symbol-lst (string-append (symbol-name tpred) "-")
dnames "-MODIFIER-LEMMA"))
(wrld (acl2::access ds% ds$ :defdata-world))
(disabled (runes-to-be-disabled dprex wrld))
(selector-lemmas (record-selector-lemmas snms tpred fnames dprex disabled))
(modifier-lemmas (record-modifier-lemmas mnms tpred fnames dprex disabled wrld))
(vs (modify-symbol-lst "VAR-" dnames ""))
(cnm (modify-symbol "" tpred "-CONSTRUCTOR-LEMMA"))
(constructor-lemma (record-constructor-lemma cnm typid tpred dprex vs disabled))
(?dnms (modify-symbol-lst (string-append (symbol-name tpred) "-")
dprex "-DISJOINT-LEMMA"))
(disjoint-lemmas nil)
; (record-disjoint-constituent-lemmas dnms tpred dex-types R$ types-ht$))
(record-lemmas (append disjoint-lemmas
(cons constructor-lemma
(append selector-lemmas modifier-lemmas)))))
(acl2::change ds% ds$ :support-lemmas
(acl2::change supp-lemmas%
s-lemm
:record
(append record-lemmas (acl2::access supp-lemmas% s-lemm :record)))
)))
(defun is-record-type (texp typId ctx ds$)
;returns (mv trans-record-def ds$) where trans-record-def is nil if texp is
;not a record
(b* (((unless (and (consp texp)
(eq (car texp) 'record)))
(mv nil ds$))
((unless (>= (len (cdr texp)) 1))
(prog2$
(er hard ctx "~|Record ~x0 should have atleast 1 constituent.~%" texp )
(mv nil ds$)))
;definitely a record (and right now anonymous records cant be nested)
(ds$ (update-type-class-top-level$ 'record typId ds$))
(dest-decl-lst (cdr texp))
(dnames (strip-cars dest-decl-lst))
(dex-types (strip-cdrs dest-decl-lst))
(dprex (get-predicate-symbol-lst dex-types))
((mv erp dest-decl-lst1 ds$)
(trans-dest-typ-decl-lst typId dest-decl-lst nil ctx ds$))
((when erp)
(prog2$
(er hard ctx
"~|Record ~x0 has malformed destructor declarations.~%"
texp)
(mv nil ds$)))
(ds$ (add-newconstructor typId dnames dprex ds$))
(ds$ (add-record-type-support-lemmas-to-ds$ typId dnames dex-types ds$))
)
;just use the product-datadef function, so record is just syntactic
;sugar. TODO: But you dont generate record lemmas for this desugared
;version.
(mv (cons typId dest-decl-lst1) ds$)))
(defun add-map-type-support-lemmas-to-ds$ (typid t1 t2 ds$)
(b* ((tpred (get-predicate-symbol typid))
(t1p (get-predicate-symbol t1))
(t2p (get-predicate-symbol t2))
(s-lemm (acl2::access ds% ds$ :support-lemmas))
(s-nm (modify-symbol "" tpred "-SELECTOR-LEMMA"))
(m-nm (modify-symbol "" tpred "-MODIFIER-LEMMA"))
(d-nm1 (modify-symbol "DISJOINT-" tpred
(string-append "-" (symbol-name t1p))))
(d-nm2 (modify-symbol "DISJOINT-" tpred
(string-append "-" (symbol-name t2p))))
(elim-rule-name (modify-symbol "" typid "-MAP-ELIM-RULE"))
(nume (list :elim elim-rule-name))
(elim-term `(implies (if (,tpred x) ;x is important in elim-rule representation
(mget a x)
'nil)
(equal (mset a (mget a x) (acl2::map-identity x))
x)))
(elim-rule (get-elim-rule nume elim-term '(mget a x)))
(generic-lemmas
`((defthm ,(modify-symbol "" tpred "-IMPLIES-GOOD-MAP")
(implies (,tpred x)
(acl2::good-map x))
:hints (("goal" :in-theory (e/d (,tpred))))
:rule-classes ((:rewrite :backchain-limit-lst 1)
(:forward-chaining)))
(defthm ,(modify-symbol "" typid "-EXCLUDES-ATOM-LIST")
(implies (and (,tpred x)
(consp x))
(not (atom-listp x)))
:hints (("goal" :in-theory (e/d (,tpred) )))
:rule-classes (:tau-system))
(defthm ,(modify-symbol "" typid "-MAP-IDENTITY-GENERALIZE")
(implies (,tpred x)
(,tpred (acl2::map-identity x)))
:rule-classes (:generalize))))
(disjoint-lemma1
`(defthm ,d-nm1
(implies (,tpred x)
(not (,t1p x)))
:hints (("Goal" :in-theory (e/d (,tpred ,t1p))))))
(?disjoint-lemma2
`(defthm ,d-nm2
(implies (,tpred x)
(not (,t2p x)))
:hints (("Goal" :in-theory (e/d (,tpred ,t2p))))))
(wf-key-lemma
`(defthm ,(modify-symbol "" t1p "-IS-WELL-FORMED")
(implies (,t1p x)
(acl2::wf-keyp x))
:rule-classes ((:rewrite :backchain-limit-lst 1)
(:forward-chaining))))
(address-in-domain-lemma
`(defthm ,(modify-symbol "" tpred "-DOMAIN-LEMMA")
(implies (and (,tpred x)
(mget a x))
(,t1p a))
:hints (("Goal" :in-theory (e/d
(,tpred mget acl2::acl2->map)
(,t1p))))
:rule-classes ((:rewrite :backchain-limit-lst 1)
:forward-chaining :generalize)))
(selector-lemma
`(defthm ,s-nm
(implies (and (,tpred x)
(mget acl2::a x))
(,t2p (mget acl2::a x)))
:hints (("Goal" :in-theory (e/d
(,tpred mget acl2::acl2->map)
(,t1p ,t2p))))
:rule-classes (:rewrite :generalize)))
(modifier-lemma1
`(local (defthm ,(modify-symbol "" m-nm "-SUPPORT")
(implies (and (,tpred x)
(,t1p acl2::a)
(,t2p v))
(,tpred (acl2::mset-wf acl2::a v x)))
:hints (("Goal" :induct (acl2::good-map x)
:in-theory (e/d (,tpred acl2::good-map acl2::mset-wf)
(,t1p ,t2p acl2::wf-keyp))))
:rule-classes (:rewrite :generalize))))
(modifier-lemma
`(defthm ,m-nm
(implies (and (,tpred x)
(,t1p acl2::a)
(,t2p v))
(,tpred (mset acl2::a v x)))
:hints (("Goal" :in-theory
(e/d (,tpred mset)
(,t1p ,t2p acl2::wf-keyp))))
:rule-classes (:rewrite :generalize)))
(map-elim-put-table-event
`(table map-elim-table ',typid ',elim-rule :put))
(map-lemmas (append generic-lemmas
(list disjoint-lemma1
;disjoint-lemma2 ;TODO
address-in-domain-lemma
selector-lemma
wf-key-lemma
modifier-lemma1 modifier-lemma
map-elim-put-table-event
))))
(acl2::change ds% ds$ :support-lemmas
(acl2::change supp-lemmas%
s-lemm
:map
(append map-lemmas (acl2::access supp-lemmas% s-lemm :map)))
)))
(defun is-map-type (texp typId ctx ds$)
;returns (mv trans-map ds$) trans-map is nil if not a map
(b* (((unless (and (consp texp)
(eq (car texp) 'map)))
(mv nil ds$))
;Is a map
((unless (= (len (cdr texp)) 2))
(prog2$
(er hard ctx "Map should be of form (map typeId1 typeId2), ~
but given ~x0.~%" texp)
(mv nil ds$)))
(lpair (cdr texp))
(keyT (car lpair))
(valT (cadr lpair))
(w (acl2::access ds% ds$ :defdata-world))
((unless (and (is-registered keyT w)
(is-registered valT w)))
(prog2$
(er hard ctx "~x0 and ~x1 should be predefined types.~%" keyT valT)
(mv nil ds$)))
(ds$ (add-map-type-support-lemmas-to-ds$ typId keyT valT ds$)))
;map is just syntactic sugar
(mv `(oneof nil (mset ,keyT ,valT ,typId)) ds$)))
;add generated set type lemmas to a temporary global variable
;For each type only one set type is added
(defun add-set-type-support-lemmas-to-ds$ (typid ds$)
(let ((tpred (get-predicate-symbol typid))
(s-lemm (acl2::access ds% ds$ :support-lemmas)))
(acl2::change ds% ds$ :support-lemmas
(acl2::change supp-lemmas%
s-lemm
:set
(cons `(defthm ,(modify-symbol "" tpred "-SETP")
(implies (,tpred x)
(SET::setp x))
:rule-classes ((:forward-chaining)
(:rewrite :backchain-limit-lst 1)
))
(acl2::access supp-lemmas% s-lemm :set)))
)))
;add generated list type lemmas to a temporary global variable
;For each type only one list type is added
(defun add-list-type-support-lemmas-to-ds$ (typid ctype1 ds$)
(b* ((tpred (get-predicate-symbol typid))
(s-lemm (acl2::access ds% ds$ :support-lemmas))
(wrld (acl2::access ds% ds$ :defdata-world))
(atom-list-subtypep (and (symbolp ctype1)
(is-subtype ctype1 'acl2::atom wrld)))
(tlp-forms `((defthm ,(modify-symbol "" tpred "-IMPLIES-TLP")
(implies (,tpred x)
(true-listp x))
;ASK Pete: true-listp is disabled in the std/lists theory, earlier we used coi/lists/basic, where it was enabled! Which to use?
:hints (("Goal" :in-theory (enable true-listp)))
:rule-classes ((:forward-chaining)
(:compound-recognizer)
(:rewrite :backchain-limit-lst 1)))
(defthm ,(modify-symbol "" tpred "-TLP-APPEND")
(implies (and (,tpred x)
(,tpred acl2::y))
(,tpred (acl2::append x acl2::y))) ;July 11th v941 - why is induction on binary-append disabled? ans: coi/lists/basic
:hints (("Goal" :induct (true-listp x)
:in-theory (enable true-listp)
))
:rule-classes ((:rewrite :backchain-limit-lst 1)))
))
(tlp-ctype1-forms (if (is-a-typeName ctype1 (acl2::access ds% ds$ :defdata-world))
(let ((ctype1-pred (get-predicate-symbol ctype1)))
`((defthm ,(modify-symbol "" tpred "-TLP-CONS")
(implies (and (,ctype1-pred x)
(,tpred acl2::y))
(,tpred (cons x acl2::y)))
:rule-classes :tau-system)
(defthm ,(modify-symbol "" tpred "-TLP-DESTR")
(implies (and (,tpred x)
(not (equal x nil)))
(and (,ctype1-pred (car x))
(,tpred (cdr x))))
:rule-classes :tau-system)
))
'()))
(atom-list-subtype-form
`(defthm ,(modify-symbol "" tpred "-SUBTYPE-OF-ATOM-LIST")
(implies (,tpred x)
(atom-listp x))
:rule-classes :tau-system))
(ev-forms (append tlp-ctype1-forms tlp-forms))
(ev-forms (if atom-list-subtypep
(cons atom-list-subtype-form ev-forms)
ev-forms)))
(acl2::change ds% ds$ :support-lemmas
(acl2::change supp-lemmas%
s-lemm
:listof
(append ev-forms
(acl2::access supp-lemmas% s-lemm :listof)))
)))
;;PETE: Should we get rid of the compound recognizer rule above?
;;It can be dangerous, eg, Harsh had the rule (tlp x) => (tlp x)
;;as a compound recognizer and it slowed down proofs *a lot*, but
;;maybe we just need to avoid this case and it will work out
;;fine. With the bad rule disabled, a proof went through in 13
;;seconds that previously took 205 seconds. More experiments are
;;needed. I did more experiments. The rule is fine as is. Just
;;make sure not to screw up with the above rules.
(defun is-list-type (texp typid tnames ctx ds$)
;return (mv constituentTypeExpr|nil ds$)
(b* (((unless (and (consp texp)
(eq (car texp) 'listof)))
(mv nil ds$))
;Is a list type
((unless (= (len (cdr texp)) 1))
(prog2$
(er hard ctx "~|listof should be of form (listof typeExpr) but ~x0 if not.~%" texp)
(mv nil ds$)))
(ds$ (update-type-class-top-level$ 'listof typid ds$))
((mv & ctype1 ds$)
(trans-constituent-type (cadr texp) typid tnames ctx ds$))
;;skipped error check.
(ds$ (add-list-type-support-lemmas-to-ds$ typid ctype1 ds$)))
(mv `(oneof nil (cons ,ctype1 ,typid)) ds$)))
(defun is-set-type (texp typid tnames ctx ds$)
;returns (mv trans-list|nil ds$)
(b* (((unless (and (consp texp)
(eq (car texp) 'set)))
(mv nil ds$))
;Is a set type
((unless (= (len (cdr texp)) 1))
(prog2$
(er hard ctx "set should be of form (set typeId) ~
but ~x0 if not.~%" texp)
(mv nil ds$)))
(ds$ (update-type-class-top-level$ 'set typid ds$))
((mv & ctype1 ds$)
(trans-constituent-type (cadr texp) typid tnames ctx ds$))
;;skipped error check.
(ds$ (add-set-type-support-lemmas-to-ds$ typid ds$)))
(mv `(oneof nil (SET::insert ,ctype1 ,typid)) ds$)))
;gives back pre-processed data-type-exp or error
;Sig: Any * Sym * Sym-List * Sym * State -> (mv erp trans-dtexp ds$)
;dtexp : TypeName | Singleton | Enum | Map | Record | List | Set | Prod-Union-type
;record, list, map, set have been normalized (converted
;to constituentTypeExpr) in trans-dtexp
(defun translate-defbody (dtexp typId tnames ctx ds$)
;returns (mv erp trans-defbody ds$)
(b* (((when (is-singleton-type-p dtexp))
(let ((ds$ (update-type-class-top-level$ 'acl2::singleton typId ds$)))
(mv nil dtexp ds$)));constant expression or constant value?
((when (is-a-typeName dtexp (acl2::access ds% ds$ :defdata-world)))
(let ((ds$ (update-type-class-top-level$ 'acl2::alias typId ds$)))
(mv nil dtexp ds$)))
((unless (consp dtexp))
(prog2$
(er hard ctx "~x0 is an atom, but is neither a singleton-type ~
nor a predefined typename~%" dtexp)
(mv t dtexp ds$)))
;is a data type expression (either union or product or some syntactic sugar
(is-range
(is-range-type dtexp))
((when is-range)
(let ((ds$ (update-type-class-top-level$ 'range typId ds$)))
(mv nil is-range ds$)))
(is-enum
;preprocessing and eval called inside enum
(is-enum-type dtexp ctx (acl2::access ds% ds$ :defdata-world)))
((when is-enum)
(let ((ds$ (update-type-class-top-level$ 'enum typId ds$)))
(mv nil is-enum ds$)))
((mv is-map ds$) (is-map-type dtexp typId ctx ds$))
((when is-map)
(let ((ds$ (update-type-class-top-level$ 'map typId ds$)))
(mv nil is-map ds$))) ;ADDED 3rd May 2011 REMOVED 28th Aug '12 ADDED 17 July '13
((mv is-record ds$) (is-record-type dtexp typId ctx ds$))
;type class of record also gets update on successful entry and not here
((when is-record)
(prog2$
(cw? (acl2::access ds% ds$ :defdata-debug)
"record support lemmas: ~x0~%" (acl2::access ds% ds$ :support-lemmas))
(mv nil is-record ds$)))
((mv is-list ds$) (is-list-type dtexp typId tnames ctx ds$))
((when is-list) (mv nil is-list ds$))
((mv is-set ds$) (is-set-type dtexp typId tnames ctx ds$))
((when is-set) (mv nil is-set ds$))
((mv erp is-un ds$)
(trans-union-type-exp dtexp typId tnames ctx ds$))
;For product and union we update type class in the top-level call
;of trans-product-type-exp and trans-union-type-exp respectively
((when is-un)
(mv erp is-un ds$))
((mv erp is-prod ds$)
(trans-product-type-exp dtexp typId tnames ctx ds$))
((when is-prod)
(mv erp is-prod ds$))
((when erp)
(prog2$
(er hard ctx "Error in translating type expression ~x0~%" dtexp)
(mv t nil ds$))))
(prog2$
(er hard ctx
"Illegal DataType Expression ~x0.~
Should be either: typename, singletonType, enum, range~
record, listof, oneof (union), product type, set, map.~%" dtexp )
(mv t nil ds$))))
;do the foll checks:
;1. Def is a true-list and is of form (typeId dataTypeExp [:hints ])
;2. typeId is a symbol TODO: We should check if its not already defined
;3. dataTypeExp is a legal data type expression
;4. keyword-list [:hints ...] TODO: should it be defined per mut-rec def or for defdata whole?
;5. dataTypeExp is also pre-processed
(defun translate-defs0 (def tnames ctx ds$)
;return (trans-def ds$) or aborts on error
(b* (((unless (and (true-listp def)
(>= (len def) 2)))
(prog2$
(er hard ctx "Definition ~x0 incorrectly formed.~%" def)
(mv nil ds$)))
(typId (car def))
(dataTypExp (cadr def))
((unless (is-a-typeId-p typId (acl2::access ds% ds$ :defdata-world)))
(prog2$
(er hard ctx "~x0 is not a valid Type Identifier .~%" typId)
(mv nil ds$)))
((mv erp dtexp ds$)
(translate-defbody dataTypExp typId tnames ctx ds$))
((unless (not erp))
(prog2$
(er hard ctx "Could not translate defdata body ~x0~%" dataTypExp)
(mv nil ds$)))
(rst (cddr def)) ;hints etc keyword list
((unless (acl2::keyword-value-listp rst)) ;check for hints
(prog2$
(er hard ctx "Expecting :hints but found ~x0.~%" rst)
(mv nil ds$))))
;reconstruct. cddr may be hints
(mv (append (list typId dtexp) rst) ds$)))
(defun translate-defs0-lst (defs tnames ctx ds$ ans)
(if (endp defs)
(mv ans ds$)
(b* ((def (car defs))
;check for errors in syntax and also preprocess (translate)
((mv cdef ds$) (translate-defs0 def tnames ctx ds$)))
(translate-defs0-lst (cdr defs)
tnames
ctx ds$
(append ans (list cdef))))))
;;; normalise single and mutually-recursive defs
;;; into (defdata (typeId dataTypeExp)+ )
;;; and then call check-syntax-defs on resulting normalised form
;;; Additionaly check for empty definitions and
;;; empty enum/oneof/anyof/record/listof(Not required i guess, redundant)
(defun translate-defs (defs ctx ds$)
;returns (mv trans-defs ds$) or aborts on error
(declare (xargs :mode :program))
(b* (((unless (and (consp defs)
(true-listp defs)))
(prog2$
(er hard ctx "Empty form not allowed.~%")
(mv nil ds$)))
((when (and (not (symbolp (car defs)));not single def
(found-empty-defp defs)))
;check for empty defs and empty enum/oneof/record/anyof/listof
(prog2$
(er hard ctx
"Empty definition or Empty body in ~x0 not allowed.~%"
defs)
(mv nil ds$)))
((when (and (not (symbolp (car defs)))
(consp (cdr defs)))) ;atleast 2 types
;;should i name this in acl2 package (mut-rec)?
(let* ((tnames (strip-cars defs))
(undef-lst (make-list (len tnames) :initial-element :undefined))
(ds$ (if (eq (acl2::access ds% ds$ :type-class) :undefined)
(acl2::change ds% ds$ :type-class (cons 'acl2::mutually-recursive
(pairlis$ tnames undef-lst)))
ds$)))
(translate-defs0-lst defs tnames ctx ds$ nil)))
;single defn to be normalised
(def (if (symbolp (car defs)) defs (car defs)))
;rename defs to def to avoid confusion, def is the single definition
((unless (> (len def) 1))
(prog2$
(er hard ctx "Syntax Error in defdata: Empty definition.~%" )
(mv nil ds$)))
((unless (acl2::keyword-value-listp (cddr def)))
;check for hints
(prog2$
(er hard ctx "Definitions that are not mutually-recursive should be ~
of form (defdata <id> <type-definition> [:hints <hints>
...]).~%" )
(mv nil ds$)))
((when (found-empty-defp (list def)))
(prog2$
(er hard ctx "Found empty definition or Empty body in ~x0.~%"
def)
(mv nil ds$))))
(translate-defs0-lst (list def) (list (car def)) ctx ds$ nil)))
(logic)
; See first issue in acl2s-issues. 5 July '13
; common interface for enumerators (both inf and fin)
; TODO: what if names enum-sym and values-sym are already in history
(defun cons-up-defconsts (names lens vals)
(declare (xargs :guard (and (symbol-listp names)
(nat-listp lens)
(true-listp vals))))
(if (endp names)
nil
(b* ((name (car names))
(values-sym (get-values-symbol name))
(enum-sym (get-enumerator-symbol name))
(enum-uniform-sym (get-uniform-enumerator-symbol name)))
(append (list* `(defconst ,values-sym ',(car vals))
`(defun ,enum-sym (n)
(declare (xargs :guard (natp n)))
(nth (mod n ,(car lens)) ,values-sym))
(make-enum-uniform-defun-ev enum-uniform-sym enum-sym))
(cons-up-defconsts (cdr names)
(cdr lens)
(cdr vals))))))
(defun cons-up-pred-defthms (tnames pnames bodies rsts)
(declare (xargs :guard (and (true-listp tnames)
(true-listp bodies)
(true-listp pnames)
(true-listp rsts))))
(if (endp tnames)
nil
(cons `(defthm ,(car tnames)
(equal (,(car pnames) v)
,(car bodies))
:rule-classes nil
. ,(car rsts))
(cons-up-pred-defthms (cdr tnames)
(cdr pnames)
(cdr bodies)
(cdr rsts)))))
(defun cons-up-non-recursive-pred-definition-defthms (tnames pnames bodies)
(declare (xargs :guard (and (true-listp tnames)
(true-listp bodies)
(true-listp pnames))))
(if (endp tnames)
nil
(cons `(defthm ,(car tnames)
(equal (,(car pnames) v)
,(car bodies))
:hints (("Goal" :in-theory (enable ,(car pnames)))))
(cons-up-non-recursive-pred-definition-defthms (cdr tnames)
(cdr pnames)
(cdr bodies)))))
(defun lens (l)
(declare (xargs :guard (true-list-listp l)))
(if (endp l)
nil
(cons (len (car l))
(lens (cdr l)))))
(defun cons-up-register-custom-type-ev (tnames)
(declare (xargs :verify-guards nil
:guard (and (symbol-listp tnames))))
(if (endp tnames)
'()
(cons `(register-custom-type ,(car tnames)
t
,(get-enumerator-symbol (car tnames))
,(get-predicate-symbol (car tnames)))
(cons-up-register-custom-type-ev (cdr tnames)))))
(defun cons-up-add-type-info-calls
(tsizes tnames tpreds tenums ttestenums defs
recursive-tnames type-class)
(declare (xargs :verify-guards nil
:guard (and (symbol-listp tnames)
(true-listp tsizes)
(implies (consp tsizes)
(or (equal (car tsizes) t)
(natp (car tsizes))))
(symbol-listp recursive-tnames)
(symbol-listp tpreds)
(symbol-listp tenums)
(symbol-listp ttestenums)
;(alistp defs)
(type-class-p type-class))))
(if (endp tnames)
nil
(cons `(table
defdata::types-info-table
',(car tnames)
',(acl2::make types-info%
:size (car tsizes)
:enumerator (car tenums)
:predicate (car tpreds)
:enumerator-test (car ttestenums)
:enum-uniform (get-uniform-enumerator-symbol (car tnames))
:defs defs
:derivedp t;defdata == derived data-type
:recursivep (if (member-equal (car tnames)
recursive-tnames)
t
nil)
:consistentp nil
:type-class type-class)
:put)
(cons-up-add-type-info-calls (cdr tsizes)
(cdr tnames)
(cdr tpreds)
(cdr tenums)
(cdr ttestenums)
defs
recursive-tnames
type-class
))))
;generate add-datatype-node-dtg-batch calls for each tname in tnames
(defun cons-up-add-datatype-node-dtg-calls1 (tnames)
(declare (xargs :guard (symbol-listp tnames)))
(if (endp tnames)
nil
(cons `(trans-eval `(add-vertex$$ ',',(car tnames) R$ types-ht$)
'add-vertices-to-type-graph-event state t)
;`(add-datatype-node-batch ,(car tnames)) ;macro call, so dont quote like elsewhere
(cons-up-add-datatype-node-dtg-calls1 (cdr tnames)))))
(defun add-vertices-to-type-graph-event (tnames)
(declare (xargs :guard (symbol-listp tnames)))
(b* ((calls (cons-up-add-datatype-node-dtg-calls1 tnames)))
`(make-event
(er-progn
,@calls
(value '(value-triple :invisible)))
:check-expansion t)))
;filter typ-exps which are typenames
(defun filter-typeName (texp-lst tnames state)
(declare (xargs :stobjs (state)
:mode :program
:guard (and (true-listp texp-lst)
(symbol-listp tnames))))
(if (endp texp-lst)
nil
(let* ((texp (car texp-lst))
(istype (or (is-a-typeName texp (w state))
(mem1 texp tnames))))
(if istype
(cons texp (filter-typeName (cdr texp-lst) tnames state))
(filter-typeName (cdr texp-lst) tnames state)))))
(program)
;list together calls that add a edge in the subtype graph for each
;constituent-type -> union-type
; TODO - not general, doesnt treat product constituents
(mutual-recursion
(defun collect-defdata-oneof-subtype-event (dtexp typ tnames w)
(let* ((T1p (get-predicate-symbol typ)))
(cond ((is-singleton-type-p dtexp)
(b* ((ev-form-print `(defthm ,(modify-symbol "EVAL-" T1p (string-append "-TAU-RULE-EQUAL-"(to-string dtexp)))
(,T1p ,dtexp) :rule-classes :tau-system))
(ev-forms `((value-triple (cw? (get-acl2s-defdata-verbose) "~|Submitting ~x0~|" ',ev-form-print))
,ev-form-print)))
ev-forms))
((or (member-eq dtexp tnames) (is-a-typeName dtexp w))
`((defdata-subtype ,dtexp ,typ)))
((and (consp dtexp)
(or (eq (car dtexp) 'oneof) (eq (car dtexp) 'anyof)))
(collect-defdata-oneof-subtype-events (cdr dtexp) typ tnames w))
(t '()))))
(defun collect-defdata-oneof-subtype-events (c-typexp-lst typ tnames w)
(declare (xargs :guard (and (true-listp c-typexp-lst)
(symbolp typ)
(symbol-listp tnames)
(plist-worldp w))))
(if (endp c-typexp-lst)
'()
(append (collect-defdata-oneof-subtype-event (car c-typexp-lst) typ tnames w)
(collect-defdata-oneof-subtype-events (cdr c-typexp-lst) typ tnames w))))
)
; generate subtype edge calls for each tname in tnames (not recursive
; types are also dealt uniformly)
(defun constituent-types-oneof-subtype-events (defs tnames w)
(declare (xargs :mode :program
:guard (and (true-listp defs)
(symbol-listp tnames)
(plist-worldp w))))
(if (endp defs)
'()
(let* ((def (car defs))
(nm (car def))
(tbody (cadr def)))
(if (and (consp tbody) ;not a singleton or typename
(or (eq (car tbody) 'oneof) ;is a union type expression
(eq (car tbody) 'anyof)))
(append (collect-defdata-oneof-subtype-events (cdr tbody) nm tnames w)
(constituent-types-oneof-subtype-events (cdr defs) tnames w))
(constituent-types-oneof-subtype-events (cdr defs) tnames w)))))
(logic)
(defun defsp (x)
(if (atom x)
(equal x nil)
(and (= 2 (len (car x)))
(symbolp (first (car x)))
(defbodyp (second (car x)))
(defsp (cdr x)))))
(defthm rec-type-defbody-type
(implies (defsp defs)
(defbodyp (second (assoc-eq typ defs)))))
;TODO singleton types not yet dealt with
(defun make-subtype-events1 (tc defs)
"defs are all defs of type-class tc. generate defdata-subtype events for each def"
(declare (xargs :guard (and (defsp defs))))
(if (endp defs)
'()
(let* ((def (car defs))
(nm (car def));shud be a symbol
(tbody (cadr def)))
(case tc
(acl2::alias (append (list (list 'defdata-subtype nm tbody)
(list 'defdata-subtype tbody nm))
(make-subtype-events1 tc (cdr defs))))
(listof (cons (list 'defdata-subtype nm 'acl2::true-list)
(make-subtype-events1 tc (cdr defs))))
(map (cons (list 'defdata-subtype nm 'acl2::alist)
(make-subtype-events1 tc (cdr defs))))
(otherwise (make-subtype-events1 tc (cdr defs)))))))
(local
(defthm filter-defs-guard1
(implies (and (symbol-alistp x)
(not (consp x)))
(equal x nil))
:rule-classes :tau-system))
(defun filter-defs (tc defs alst)
"filter out defs of type-class tc"
(declare (xargs :verify-guards nil
:guard (and (type-class-simple-p tc)
(defsp defs)
(symbol-alistp alst))))
(if (endp defs)
'()
(let ((entry (assoc-eq (caar defs) alst)))
(if (and (consp entry)
(eq tc (cdr entry)))
(cons (car defs)
(filter-defs tc (cdr defs) alst))
(filter-defs tc (cdr defs) alst)))))
(local (defthm filter-defs-guard2
(implies (and (type-class-simple-p tc)
(defsp x))
(defsp (filter-defs tc x y)))
:rule-classes :tau-system))
(verify-guards filter-defs)
(defun make-subtype-events (tc defs)
(declare (xargs :guard (and (defsp defs)
(type-class-p tc))))
(cond ((eq tc 'acl2::alias) (make-subtype-events1 tc defs))
((and (consp tc) (eq (car tc) 'acl2::mutually-recursive))
(append (make-subtype-events1 'acl2::alias (filter-defs 'acl2::alias defs (cdr tc)))
(make-subtype-events1 'listof (filter-defs 'listof defs (cdr tc))))) ;can map be in clique?
((member-eq tc '(listof map)) (make-subtype-events1 tc defs))
(t '())))
(defun make-boolean-tau-rule-event (typs)
(declare (xargs :guard (and (symbol-listp typs))))
(if (endp typs)
'()
(let ((pred (get-predicate-symbol (car typs))))
(cons `(defthm ,(modify-symbol "" pred "-IS-BOOLEAN-TAU")
(booleanp (,pred x))
:rule-classes :tau-system
:hints (("goal" :in-theory (enable ,pred))))
(make-boolean-tau-rule-event (cdr typs))))))
;; (defun record-tau-subtype-events (preds P)
;; (declare (xargs :guard (and (symbol-listp preds)
;; (symbolp P))))
;; (if (endp preds)
;; '()
;; (cons `(defthm ,(modify-symbol "" (car preds) (string-append "-SUBTYPE-OF-" (symbol-name P)))
;; (implies (,(car preds) x) (,P x))
;; :rule-classes (:tau-system)
;; :hints (("goal" :in-theory (enable ,(car preds)))))
;; (record-tau-subtype-events (cdr preds) P))))
;; (defun record-defdata-subtype-events (typs P)
;; (declare (xargs :guard (and (symbol-listp typs)
;; (symbolp P))))
;; (if (endp typs)
;; '()
;; (cons `(defdata-subtype ,(car typs) ,P
;; :hints (("goal" :in-theory (enable ,(get-predicate-symbol (car typs)) ))))
;; (record-defdata-subtype-events (cdr typs) P))))
;extract destructor-predicate pairs
(defun strip-dex-pairx (new-constructors)
(declare (xargs :mode :program
:guard (alistp new-constructors)))
(if (endp new-constructors)
nil
(cons (dex-pairs-entry (car new-constructors))
(strip-dex-pairx (cdr new-constructors)))))
;extract predicates
(defun strip-preds (new-constructors)
(declare (xargs :mode :program
:guard (alistp new-constructors)))
(if (endp new-constructors)
nil
(cons (predicate-name-entry (car new-constructors))
(strip-preds (cdr new-constructors)))))
;ADD this to the syntactic check!!! TODO. THis gives some false positives
(mutual-recursion
;Is typename defined in a (defdata (tname1 ...) ...) a recursive type?
;Implicit contract: (in typename tnames)
(defun is-recursive-type-lst (typename tnames defbody-lst)
(declare (xargs :guard (and (symbolp typename)
(symbol-listp tnames)
(defbody-listp defbody-lst))))
;:verify-guards nil))
(if (endp defbody-lst)
nil
(or (is-recursive-type typename tnames (car defbody-lst))
(is-recursive-type-lst typename tnames (cdr defbody-lst)))))
(defun is-recursive-type (typename tnames defbody)
(declare (xargs :guard (and (symbolp typename)
(symbol-listp tnames)
(defbodyp defbody))))
(cond ((possible-constant-valuep defbody) nil)
((symbolp defbody) (mem1 defbody tnames))
(t (is-recursive-type-lst typename tnames (cdr defbody)))))
)
(defthm rec-type-consp-defbody-type
(implies (and (consp defbody)
(defbodyp defbody)
(is-recursive-type typename tnames defbody))
(defbody-listp (cdr defbody))))
(defun get-recursive-typenames (types defs tnames)
(declare (xargs ;:mode :program
:guard-hints (("Goal" :in-theory (disable is-recursive-type)))
:guard (and (symbol-listp types)
(symbol-listp tnames)
(defsp defs))))
(if (endp types)
nil
(let ((typename (car types)))
(if (is-recursive-type typename tnames (second (assoc-eq typename defs)))
(cons typename
(get-recursive-typenames (cdr types) defs tnames))
(get-recursive-typenames (cdr types) defs tnames)))))
(defun my-append (Xs Ys)
(declare (xargs :guard (and (true-listp Xs)
(true-listp Ys))))
(append Xs Ys));for debugging
;this function takes care of records, where the constructor name is the
;same as the name of the type and hence to avoid a bad redefinition\
;we collect only that preds that need predicates , excluding
;the constructor predicate which is generated anyway!
(defun names-need-predicates (nms nms-with-pred new-constructors)
(declare (xargs :guard (and (symbol-listp nms)
(symbol-listp nms-with-pred)
(symbol-alistp new-constructors))))
(let* ((nms-need (set-difference-eq nms nms-with-pred))
(new-names (strip-cars new-constructors)))
(set-difference-eq nms-need new-names)))
;;harshrc: changed name of the main function (from compute-defdata)
;; defs - ((typeid . constituentTypeExpr) ...)
(defun compute-typecombs (defs kwd-options-lst
new-record-constructors
support-lemmas custom-types
type-class
ctx wrld state)
(declare (xargs :mode :program
:stobjs (state)))
(b* ((names (strip-cars defs))
(?verbose (get-acl2s-defdata-verbose))
;(defbodies (strip-cadrs defs))
(pred-syms (get-predicate-symbol-lst names))
;with predicates already defined --ASK: what if its defined inconsistently??BUG?
(names-with-preds (collect-with-plausible-pred-fns names wrld))
(defs-with-preds (assoc-lst names-with-preds defs))
(defbodies-with-preds (strip-cadrs defs-with-preds))
(rsts-with-preds (acl2::strip-cddrs defs-with-preds))
(pred-syms-with-preds (get-predicate-symbol-lst names-with-preds))
(thm-syms-with-preds (get-predicate-testthm-symbol-lst names-with-preds))
;predicates need to be defined
(names-need-preds (names-need-predicates names names-with-preds new-record-constructors))
(pred-syms-need-preds (get-predicate-symbol-lst names-need-preds))
(defs-need-preds (assoc-lst names-need-preds defs))
(defbodies-need-preds (strip-cadrs defs-need-preds))
;non recursive predicates(from names that need preds) need to be treated separately
(recursive-names (get-recursive-typenames names-need-preds defs names))
(non-recursive-names (set-difference-eq names-need-preds recursive-names))
(?non-recursive-pred-syms (get-predicate-symbol-lst non-recursive-names))
(defs-non-recursive (assoc-lst non-recursive-names defs))
(defbodies-non-recursive (strip-cadrs defs-non-recursive))
;;events from new constructors (records)
(conx-names (strip-cars new-record-constructors))
(conx-recursive-alst (find-recursive-records pred-syms-need-preds new-record-constructors))
(conx-non-recur-alst (set-difference-eq new-record-constructors conx-recursive-alst))
(conx-recur-names (strip-cars conx-recursive-alst))
(conx-non-recur-names (set-difference-eq conx-names conx-recur-names))
(dex-pairs-non-recur-lst (strip-dex-pairx conx-non-recur-alst))
(dex-pairs-lst (strip-dex-pairx new-record-constructors))
(dex-pairs-recur-lst (strip-dex-pairx conx-recursive-alst))
(conx-pred-recur-events (cons-up-conx-prex-ev conx-recur-names dex-pairs-recur-lst))
(conx-pred-recur-defun-cdrs (strip-cdrs conx-pred-recur-events));strip defun
(conx-pred-recur-names (strip-cadrs conx-pred-recur-events))
(conx-pred-non-recur-events (cons-up-conx-prex-ev conx-non-recur-names dex-pairs-non-recur-lst))
(?conx-pred-non-recur-names (strip-cadrs conx-pred-non-recur-events))
(dex-events (append-up-dex-ev conx-names dex-pairs-lst))
(modifier-events (append-up-modifiers-ev conx-names dex-pairs-lst))
(bstar-integration-events (rcd-patbind-macro-ev conx-names dex-pairs-lst))
(conx-events (cons-up-conx-ev conx-names dex-pairs-lst))
(register-conx-dex-events (cons-up-reg-conx-dex-ev conx-names dex-pairs-lst))
;; generating supporting lemmas
(gen-lemmasp (if (mem1 :type-lemmas kwd-options-lst)
(get-value-from-keyword-value-list :type-lemmas kwd-options-lst)
t)) ;changed default for project 11th april '13
(record-implies-consp/good-map-lemmas (cons-up-record-implies-consp/good-map-ev conx-names dex-pairs-lst wrld))
;lemmas for syntactic sugar
(list-type-support-lemmas (acl2::access supp-lemmas%
support-lemmas :listof))
(set-type-support-lemmas (acl2::access supp-lemmas%
support-lemmas :set))
(record-type-support-lemmas (and gen-lemmasp
(acl2::access supp-lemmas%
support-lemmas :record)))
(map-type-support-lemmas (and gen-lemmasp
(acl2::access supp-lemmas%
support-lemmas :map)))
; lemmas for base union-product type lemmas
;(base-type-support-lemmas (g :base support-lemmas))
;(verbose (get-acl2s-defdata-verbose))
(generate-allp-alias-boolean-tau-rule-p (and (eq type-class 'acl2::alias)
(is-subtype 'ACL2::ALL (cadr (car defs)) wrld))) ;TODO, maintain ALLP aliases!
)
(if (not (no-duplicatesp names))
(er soft ctx "Duplicate found in the names being defined: ~x0" names)
(b* (((er pred-bodies-with) (er-trans-datadef-as-predicate-lst
defbodies-with-preds
pred-syms
(make-list (len defbodies-with-preds)
:initial-element 'v)
new-record-constructors
ctx wrld state))
;;-- pred-bodies-need e.g:
;;-- ((OR (EQ V 'NIL)
;;-- (AND (CONSP V)
;;-- (FOOP (CAR V))
;;-- (BARP (CDR V)))))
((er pred-bodies-need) (er-trans-datadef-as-predicate-lst
defbodies-need-preds
pred-syms
(make-list (len defbodies-need-preds)
:initial-element 'v)
new-record-constructors
ctx wrld state))
((er ?non-recur-pred-bodies-need) (er-trans-datadef-as-predicate-lst
defbodies-non-recursive
pred-syms
;TODO:Possible bug, shudnt it be non-recursive preds only
(make-list (len defbodies-non-recursive)
:initial-element 'v)
new-record-constructors
ctx wrld state))
;;-- fin-binds e.g =
;;--((FOO 42 (T T) (NIL T) (T NIL) (NIL NIL))
;;-- (BAZ (T) (NIL))
;;-- (MOO NIL))
((er fin-binds) (er-get-finite-data-defs defs new-record-constructors ctx wrld state))
(fin-names (strip-cars fin-binds))
(fin-enum-syms (get-values-symbol-lst fin-names))
(fin-values (strip-cdrs fin-binds))
(fin-lens (lens fin-values))
(fin-defs (cons-up-lists fin-enum-syms fin-values))
(inf-names (set-difference-eq names fin-names))
(inf-enum-syms (get-enumerator-symbol-lst inf-names))
;CHANGED by harshrc Jan 24 2011(earlier hack on Jun 6 2010)
(declare-guardsp (if (mem1 :declare-guards kwd-options-lst)
(get-value-from-keyword-value-list :declare-guards kwd-options-lst)
(get-acl2s-defdata-use-guards)))
(inf-bodies (strip-cadrs (assoc-lst inf-names defs)))
((er inf-enums) (er-trans-datadef-as-enumerator-lst
inf-bodies
fin-defs
inf-enum-syms
nil
new-record-constructors
ctx wrld state))
(?inf-uniform-enum-syms (get-uniform-enumerator-symbol-lst inf-names))
((er inf-uniform-enums) (er-trans-datadef-as-enumerator-lst
inf-bodies
fin-defs
(append (get-uniform-enumerator-symbol-lst custom-types) inf-uniform-enum-syms)
t
new-record-constructors
ctx wrld state))
(testing-enabled (acl2s-defaults :get testing-enabled))
(acl2-defaults-tbl (table-alist 'acl2::acl2-defaults-table wrld))
(current-termination-method-entry (assoc :termination-method acl2-defaults-tbl))
);*b
;in
(value
`(progn
;; (set-internal-acl2s-inside-defdata-flag t)
(acl2s-defaults :set testing-enabled nil)
,@(and
conx-pred-non-recur-names
`((value-triple
(cw? t
"Submitting (non-recursive) record predicate functions ~x0.~%"
',conx-pred-non-recur-names))))
,@conx-pred-non-recur-events
,@(and
(append pred-syms-need-preds
conx-pred-recur-names)
`((value-triple
(cw? t
"Submitting predicate functions ~x0.~%"
',(append pred-syms-need-preds
conx-pred-recur-names)))))
,@(and
pred-syms-need-preds
`((defuns . ,(append
conx-pred-recur-defun-cdrs
(cons-up-names-decls-lls-bodies
pred-syms-need-preds
(if T;declare-guardsp
;harshrc Sep 3rd 2012 -- OK, predicates need their guards to be
;verified. I hope this wont break anything, since this change though
;it reduces flexibility it does not change the behavior of
;declare-guardsp for now, since the default value for it was T anyway.
(make-list (len pred-syms-need-preds)
:initial-element
'(declare (xargs :guard t
:ruler-extenders :all
)))
(make-list (len pred-syms-need-preds)
:initial-element
'(declare (xargs :ruler-extenders :all)))
);end of if , this gives the declare form for the predicate
(make-list (len pred-syms-need-preds)
:initial-element '(v))
pred-bodies-need)))))
;; ,@(and
;; (or non-recursive-pred-syms conx-pred-non-recur-names)
;; `((in-theory (disable ,@(union-eq non-recursive-pred-syms
;; conx-pred-non-recur-names)))))
,@conx-events
; 10th April 2013 - Generate record=>consp/good-map for all records
; (earlier only recursive records were getting these lemmas)
,@(and conx-names
`((value-triple
(progn$
(time-tracker :defdata-generic-record-lemmas :end)
(time-tracker :defdata-generic-record-lemmas :init
:times '(2 7)
:interval 5
:msg "Elapsed runtime in generic lemma proofs for records is ~st secs;~|~%")
(cw? t
"Submitting generic record lemmas... ~%")
(cw? t;,verbose
"~x0~%" ',record-implies-consp/good-map-lemmas)))))
,@(and conx-names record-implies-consp/good-map-lemmas)
;; selectors/accessors and modifiers/updators for records
,@dex-events
,@modifier-events
,@bstar-integration-events
,@register-conx-dex-events
; TODO: check if the fin and enum names of fin-names are fresh!
,@(cons-up-defconsts fin-names ;fin-enum-syms -- 5 july '13 add defuns too
fin-lens
fin-values)
,@(cons-up-pred-defthms thm-syms-with-preds
pred-syms-with-preds
pred-bodies-with
rsts-with-preds)
,@(and inf-enums
`((value-triple
(cw? t
"Submitting enumerator functions ~x0.~%"
',inf-enum-syms))))
,@(and
inf-enums
`((defuns .
,(cons-up-names-decls-lls-bodies
inf-enum-syms
(if declare-guardsp
(make-list (len inf-enums)
:initial-element
(if current-termination-method-entry
'(declare (xargs :consider-only-ccms ((nfix x))
:guard (natp x)))
'(declare (xargs :measure (nfix x)
:guard (natp x) ))
))
(make-list (len inf-enums)
:initial-element
(if current-termination-method-entry
'(declare (xargs :consider-only-ccms ((nfix x))))
'(declare (xargs :measure (nfix x))))
)
);end of if , this gives the declare form for the enum
(make-list (len inf-enums)
:initial-element '(x))
(strip-cdrs inf-enums)))))
(in-theory (disable ,@inf-enum-syms))
,@(cons-up-register-custom-type-ev custom-types)
;;hack
,@(and current-termination-method-entry
'((acl2::set-termination-method :measure)))
,@(and
inf-uniform-enums
`((defuns .
,(cons-up-names-decls-lls-bodies
inf-uniform-enum-syms
(make-list (len inf-uniform-enums)
:initial-element
`(declare (ignorable m)
(type (unsigned-byte 31) seed)
(xargs ,@(if nil;current-termination-method-entry
'(:consider-only-ccms ((nfix m)))
'(:measure (nfix m)))
:verify-guards nil
:guard (and (natp m)
(unsigned-byte-p 31 seed))))
)
(make-list (len inf-uniform-enums)
:initial-element '(m seed))
(strip-cdrs inf-uniform-enums)))))
;;hack
,@(and current-termination-method-entry
`((acl2::set-termination-method ,(cdr current-termination-method-entry))))
(in-theory (disable ,@inf-uniform-enum-syms))
(value-triple
(cw? t
"Updating defdata type table (type-class ~x0).~%" ',type-class))
,@(and generate-allp-alias-boolean-tau-rule-p ;TODO HACK, shud i do this for all names?
(make-boolean-tau-rule-event names))
;add fin and inf type information to types-table
;(but seperately because we have to do this outside make-event)
,@(cons-up-add-type-info-calls
fin-lens
fin-names (get-predicate-symbol-lst fin-names)
fin-enum-syms nil defs
nil type-class);test-enums=nil, recursive-names=nil
;Question: How can u have multiple finite types? Multiple type defs
;invariably mean mutually-recursive!! Put an assert?
,@(cons-up-add-type-info-calls
(make-list (len inf-enums) :initial-element 't)
inf-names (get-predicate-symbol-lst inf-names)
inf-enum-syms nil defs;test-enums = nil
(get-recursive-typenames names defs names)
type-class)
(value-triple
(cw? t
"Adding ~x0 to the type relation graphs.~%" ',names))
,(add-vertices-to-type-graph-event names) ;add the node to datatype-graph
(value-triple
(cw? ,gen-lemmasp
"Updating defdata subtype/disjoint graphs.~%"))
; Record type relations with following events. Finally completely characterize the defdata def using tau rules. TODO
,@(and gen-lemmasp
(let* ((ev-forms0 (constituent-types-oneof-subtype-events defs names (w state)))
(ev-forms1 ;hack 16 July '13
(cond ((and (eq type-class 'acl2::listof)
(is-registered 'acl2::true-list wrld))
(make-subtype-events type-class defs))
;assumption: there are no mutual-recursive types in base.lisp where true-list is still undefined.
((member-eq type-class '(acl2::mutually-recursive acl2::alias map))
(make-subtype-events type-class defs))
(t '()))))
(append ev-forms1 ev-forms0)))
,@(and list-type-support-lemmas
`((value-triple
(progn$
(cw? t
"Submitting list type lemmas... ~%")
(cw? t;,verbose
"~x0~%" ',list-type-support-lemmas)))))
,@list-type-support-lemmas
,@(and set-type-support-lemmas
`((value-triple
(cw? t
"Submitting set type lemmas... ~%"))))
,@set-type-support-lemmas
,@(and record-type-support-lemmas
`((value-triple
(progn$
(time-tracker :defdata-record-lemmas :end)
(time-tracker :defdata-record-lemmas :init
:times '(2 7)
:interval 5
:msg "Elapsed runtime in type proofs for records is ~st secs;~|~%")
(time-tracker :defdata-record-lemmas :start)
(cw? t
"Submitting record type lemmas... ~%")
(cw? t;,verbose
"~x0~%" ',record-type-support-lemmas)))))
,@record-type-support-lemmas
,@(and record-type-support-lemmas
'((value-triple (prog2$
(time-tracker :defdata-record-lemmas :stop)
:invisible))))
,@(and map-type-support-lemmas
`((value-triple
(cw? t
"Submitting map type lemmas... ~%"))))
,@map-type-support-lemmas
;; ;,@ base-type-support-lemmas
(acl2s-defaults :set testing-enabled ,testing-enabled)
(value-triple ',names)
;; (set-internal-acl2s-inside-defdata-flag nil)
))
))))
;defs-ans is accumlated defs to be extracted
(defun get-defs-and-keyword-list (args defs-ans)
(declare (xargs :guard (and (true-listp args)
(true-listp defs-ans))))
(if (endp args)
(mv defs-ans nil)
(if (keyword-value-listp args);not null
(mv defs-ans args) ;abort and give back answer
(get-defs-and-keyword-list (cdr args)
(append defs-ans (list (car args)))))))
(defun initialize-ds$ (debug wrld)
(declare (xargs :guard (and (booleanp debug)
(plist-worldp wrld))))
(acl2::make ds%
:type-class :undefined
:defdata-world wrld
:newconstructors nil
:custom-types nil
:support-lemmas *initial-supp-lemmas*
:defdata-debug debug))
;; defdata frontend processing:
;; standalone enum/range events and
;; normalise listof/record/set/map and call compute-typecombs
(defun compute-defdata (args debug-flag ctx wrld state)
(declare (xargs :mode :program
:stobjs (state)))
(acl2::state-global-let*
((acl2::guard-checking-on :all))
(b* (((mv defs0 kwd-options-lst)
(get-defs-and-keyword-list args nil)))
(mv-let
(erp result state)
(b* ((ds$ (initialize-ds$ debug-flag wrld))
((mv defs1 ds$) (translate-defs defs0 ctx ds$))
(enum-event (process-enum-form defs1 ctx wrld))
(range-event (process-range-form defs1 ctx wrld)))
(cond
(enum-event (mv nil `(progn ,@enum-event) state))
(range-event (mv nil `(progn ,@range-event) state))
(t
(let* ((cust-types (acl2::access ds% ds$ :custom-types))
(validate-type-consistency-ev
(cons-up-type-consistent-thm-ev cust-types wrld))
(mk-ev-form
`(make-event
(mv-let
(erp res state)
(er-progn
(value (and ',validate-type-consistency-ev
(cw? t "~|Proving consistency of custom types ~x0...~%" ',cust-types)))
,@validate-type-consistency-ev
(value ':Type-is-consistent))
(declare (ignorable res))
(if erp ;if error
(prog2$
(er hard ',ctx "~|One or more custom Types used in defdata form are not consistent, i.e. type predicate ~
and corresponding type enumerator are not consistent. Here's the list of events that failed: ~
~x0 ~%" ',validate-type-consistency-ev)
(mv t nil state))
(compute-typecombs ',defs1 ',kwd-options-lst
',(acl2::access ds% ds$ :newconstructors)
',(acl2::access ds% ds$ :support-lemmas)
',(acl2::access ds% ds$ :custom-types)
',(acl2::access ds% ds$ :type-class)
',ctx (w state)
state)))
)))
(mv nil mk-ev-form state)))))
(mv erp result state)))))
#|
(define-enumeration-type boolean '(t nil))
(register-data-constructor (consp cons)
((allp car) (allp cdr))
:proper t)
;(trace$ er-trans-datadef-as-enumerator
; er-get-enumeration-info
; er-trans-datadef-as-enumerator-lst
; )
(compute-defdata '((foo (oneof 42 (cons boolean baz)))
(bar (oneof nil
(cons foo bar)))
(moo nil)
(baz (cons boolean moo)))
'top-level (w state) state)
|#
(defmacro defdata (&rest args)
(declare (xargs :guard (and (true-listp args)
(>= (len args) 1)))) ;just (defdata) not allowed
":Doc-Section DATA-DEFINITIONS
Specify a data definition ('type')~/
The ~c[defdata] macro can be used to specify union and product
combinations of 'types'(See :doc data-definitions for what we mean
by a 'type'). In addition to these it provides
syntactic sugar to conveniently specify enumeration types,
list types and record types. It also supports mutually-recursive
data definitions.
~c[oneof] creates a union combination of constituent 'types'.
~c[enum] creates an enumeration type, it can take as arguments
any number of acl2 constant expressions. Alternatively you can
give it one argument which can be any acl2 expression that
evaluates to a list of acl2 constants.
You can use any of the built-in constructors like ~c[cons],
~c[/], ~c[complex], ~c[succ] etc, to create product type
combinations. See examples below.
~c[record] is a syntactic sugar for the fore-mentioned
product type combination. It creates a new constructor with the
same name as the type being defined and it
also creates the destructor/selector functions for you in
addition to the predicate and enumerator as mentioned in :doc
data-definitions.
~c[(listof T)] is syntactic sugar for ~c[(oneof nil (cons T <typeId>))].
~c[enum], ~c[record] and ~c[listof] cannot be nested and are normally
used seperately at the top-level. For complex nested type combinations
just use the regular union, product combination as described above.
Remember that each successful ~c[(defdata T ...)] will generate for you two
functions ~c[Tp] and either ~c[nth-T] or ~c[*T-values*] depending on
wether ~c[T] is infinite or finite. As mentioned in :doc data-definitions
all acl2 data objects are treated as singleton 'types' and can be used
in any ~c[defdata] form.
~bv[]
Examples:
(defdata (int integer))
(defdata foo (cons (cons (oneof boolean 'ok) (cons 2 'as))
(oneof (cons int string) (oneof nat pos) 42)))
(defdata natural (oneof 0
(succ natural))
(defdata BorC (oneof boolean character))
(defdata foo (oneof (cons integer foo)
integer))
(defdata loi (listof integer))
(defdata lop (listof (oneof (cons boolean nat) integer)))
(defdata RGB (enum 'red 'green 'blue))
(defdata RGBY (enum (list 'r 'g 'b 'y))
(defdata hyperlink (record (protocol . string)
(address . string)
(display . string)))
(defdata
(bexpr (oneof boolean
(cons boolean bexpr-list)))
(bexpr-list (oneof nil
(cons bexpr bexpr-list))))
(defdata tree (oneof 'Leaf
(node (val . string) (left . tree) (right . tree))))
~ev[]
~bv[]
Usage(EBNF format):
(defdata <typeId> <dataTypeExpression>)
(defdata (<typeId> <dataTypeExpression>)+ ) ;mutually-recursive types
where <typeId> := A new identifier/symbol thats not already defined in the world
<dataTypeExpression> := <enumTypeExp> | <recordTypeExp> | <listTypeExp> | <constituentTypeExp>
<constituentTypeExp> := <typeName> | <singletonTypeExp> | <typeCombinationExp>
<typeName> := name of 'type' as described in :doc data-definitions
<singletonTypeExp> := acl2 constant expression as described in acl2 book
<typeCombinationExp> := <unionTypeExp> | <productTypeExp>
<unionTypeExp> := (oneof <constituentTypeExp> <constituentTypeExp>+)
<productTypeExp> := (<constructorId> <constituentTypeExp>*) |
(<recordConstructorId> <destructorTypeDeclaration>*)
<constructorId> := A defined constructor (see :doc register-data-constructor)
<recordConstructorId> := A new identifier/symbol thats not already defined in the world
or an already defined record constructor
<destructorTypeDeclaration> := (<destructorId> . <typeName>)
<destructorId> := A new identifier/symbol thats not already defined in the world
or a destructor fn corresponding to the record constructor
<enumTypeExp> := (enum <singletonTypeExp>+ ) | (enum <acl2-enum-expr>)
<acl2-enum-expr> := Any acl2 expression which evaluates to a list of acl2 constants.
<listTypeExp> := (listof <constituentTypeExp>)
<recordTypeExp> := (record destructorTypeDeclaration*)
~ev[]~/
"
`(with-output
:stack :push
:off :all
(make-event
`(with-output
:stack :pop
:off ,(cond ((get-acl2s-defdata-debug)
'(proof-checker))
((get-acl2s-defdata-verbose)
'(warning! observation warning proof-checker))
(t
#!acl2(remove1-eq 'error *valid-output-names*))
)
:gag-mode ,(if (get-acl2s-defdata-debug) 'nil 't)
(make-event
(compute-defdata ',',args ,(get-acl2s-defdata-debug)
','defdata (w state) state)))
)))
(defun make-subsumes-relation-name (T1 T2)
(declare (xargs :guard (and (is-a-variablep T1)
(is-a-variablep T2))))
(let* ((str1 (symbol-name T1))
(str2 (symbol-name T2))
(str11 (string-append str1 "-IS-SUBTYPE-OF-"))
(str (string-append str11 str2)))
(intern$ str "DEFDATA")))
(defun make-disjoint-relation-name (T1 T2)
(declare (xargs :guard (and (is-a-variablep T1)
(is-a-variablep T2))))
(let* ((str1 (symbol-name T1))
(str2 (symbol-name T2))
(str11 (string-append str1 "-IS-DISJOINT-WITH-"))
(str (string-append str11 str2)))
(intern$ str "DEFDATA")))
#||
(defun allp (x)
(or (atom x)
(consp x)))
(defthm allp-is-tau-predicate
(booleanp (allp x))
:rule-classes :tau-system)
;; (defthm allp-is-t
;; (equal (allp x) t)
;; :rule-classes (:rewrite))
;; (in-theory (disable allp))
(defun atomp (x) (atom x))
(defthm atomp-is-tau-predicate
(booleanp (atomp x))
:rule-classes :tau-system)
(DEFTHM ATOM-is-disjoint-with-CONS
(IMPLIES (ATOM X) (NOT (CONSP X)))
:rule-classes :tau-system)
(defthm atom-subtype-all
(implies (atom x) (allp x))
:rule-classes :tau-system)
(defthm cons-subtype-all
(implies (consp x) (allp x))
:rule-classes :tau-system)
BUT replacing atom with atomp in last 3 defthms fails.
Note that J specifically precludes predicates that are
constant-everywhere in tau-system.
||#
;;; TODO: Need to separately keep track of ALLP aliases!
(defun compute-defdata-relation (T1 T2 hints rule-classes otf-flg doc ctx wrld)
(declare (xargs :mode :program
:guard (and (is-a-variablep T1)
(is-a-variablep T2)
(keyword-listp rule-classes)
;(R$p2 (rgraph-length R$) R$)
;(types-ht$p types-ht$)
;(vertex-ht-valid-p T1 (rgraph-length R$) types-ht$)
;(vertex-ht-valid-p T2 (rgraph-length R$) types-ht$)
)))
(b* ((T1p (get-predicate-symbol T1))
(T2p (get-predicate-symbol T2))
((unless (and (is-a-typeName T1 wrld)
(is-a-typeName T2 wrld)))
;if not existing typenames raise error
(er hard ctx "~|One of ~x0 and ~x1 is not a defined type!~%" T1 T2))
;; ((when (and rule-classes
;; (or (eq T1 'ACL2::ALL)
;; (eq T2 'ACL2::ALL))))
;; ;if not existing typenames raise error
;; (er hard ctx "~|Subtype/disjoint relation not allowed on predicate ALL with non-empty rule-classes~%"))
(rule-classes (if (or (eq 'ACL2::ALL T1)
(eq 'ACL2::ALL T2)) ; TODO: Need to separately keep track of ALLP aliases!
'()
; force not to be a tau-rule bcos tau complains
rule-classes))
((when (or (and (eq ctx 'defdata-disjoint)
(is-disjoint T1 T2 wrld))
(and (eq ctx 'defdata-subtype)
(is-subtype T1 T2 wrld))))
'(value-triple :redundant))
(form (if (eq ctx 'defdata-disjoint)
`(implies (,T1p x) (not (,T2p x)))
`(implies (,T1p x) (,T2p x))))
(nm (if (eq ctx 'defdata-disjoint)
(make-disjoint-relation-name T1 T2)
(make-subsumes-relation-name T1 T2)))
;27 june 13 - aborted a hack to enable non-rec preds
;; (types-info-table (table-alist 'types-info-table wrld))
;; (ti1 (cdr (assoc-eq T1 types-info-table)))
;; (?non-recursive1? (and (acl2::access types-info% ti1 :derivedp)
;; (not (acl2::access types-info% ti1 :recursivep))))
;; (ti1 (cdr (assoc-eq T1 types-info-table)))
;; (?non-recursive2? (and (acl2::access types-info% ti2 :derivedp)
;; (not (acl2::access types-info% ti2 :recursivep))))
;; (enable-names '())
;; (enable-names (if non-recursive1? (cons T1p enable-names) enable-names))
;; (enable-names (if non-recursive2? (cons T2p enable-names) enable-names))
;; (hints (append `((:in-theory (enable (,(if
(event-form `((defthm ,nm
,form
:hints ,hints
:rule-classes ,rule-classes
:otf-flg ,otf-flg
:doc ,doc)))
(ev-form-to-print `(defthm ,nm
,form
,@(and hints
`((:hints ,hints)))
,@(and rule-classes
`((:rule-classes ,rule-classes)))))
(- (cw "~|Submitting ~x0~|" ev-form-to-print)))
;; `(make-event
;; (er-progn
;; ,@ (and (null rule-classes)
;; event-form)
;; (let ((T1 ',T1)
;; (T2 ',T2)
;; (ctx ',ctx)
;; (rule-classes ',rule-classes)
;; (event-form ',event-form))
;; (value
`(progn
;macros call so dont need quotes
,@event-form
;; ,(if (eq ctx 'defdata::defdata-disjoint)
;; ;`(add-edge-to-disjoint-graph-batch ,T1 ,T2)
;; `(add-edge-event :disjoint ,T1 ,T2)
;; ;`(add-edge-to-subtype-graph-batch ,T1 ,T2)
;; `(add-edge-event :subtype ,T1 ,T2))
;; (sync-globals-for-dtg)
(value-triple :success))))
;; (defun compute-defdata-subtype (T1 T2 state rule-classes hints otf-flg doc)
;; (declare (xargs :stobjs (state)
;; :mode :program
;; :guard (and (is-a-variablep T1)
;; (is-a-variablep T2)
;; (keyword-listp rule-classes)
;; )))
;; (let* ((T1p (get-predicate-symbol T1))
;; (T2p (get-predicate-symbol T2))
;; (rule-classes (union-eq rule-classes '(:tau-system)))
;; (name (make-subsumes-relation-name T1 T2)))
;; (if (and (is-a-typeName T1 (w state))
;; (is-a-typeName T2 (w state))) ;if not existing typenames raise error
;; (let ((form `(implies (,T1p x) (,T2p x))))
;; (mv-let (erp res state)
;; (acl2::thm-fn form state hints otf-flg doc)
;; (declare (ignore res))
;; (if erp
;; (er soft 'defdata-subtype "Failed to prove subtype relation: ~x0 ~%" form)
;; (value `(progn
;; (defthm ,name ,form
;; :rule-classes ,rule-classes
;; :hints ,hints
;; :otf-flg ,otf-flg :doc ,doc)
;; (add-edge-to-subtype-graph-batch ,T1 ,T2);macro calls so dont need quotes
;; (sync-globals-for-dtg)
;; (value-triple :defdata-subtype-success))))))
;; (er soft 'defdata-subtype "One of ~x0 and ~x1 is not a defined type!~%" T1 T2))))
(defmacro defdata-subtype (T1 T2
&key (rule-classes '(:tau-system))
hints otf-flg doc)
(declare (xargs :guard (and (is-a-variablep T1)
(is-a-variablep T2))))
":Doc-Section DATA-DEFINITIONS
Specify a subtype relation between two types~/
~c[(defdata-subtype T1 T2)] tries to prove that the first
argument to it T1(which should be a ~st[supported type-name],
to check what we mean by that ~pl[data-definitions]) is
a subtype of the second argument T2. If the ACL2 is
successful in proving the following conjecture using defthm:
~c[(implies (T1p x) (T2p x))] then this information
is stored in a internal subtype data type graph, where
we perform closure of the subtype relation. Henceforth
one can just call ~c[(subtype-p T1 T2)] to get an
affirmative which is just a lookup instead of calls
to the ACL2 theorem prover. And note that once you submit
~c[(defdata-subtype boolean symbol)] and ~c[(defdata-subtype symbol atom)]
successfully, you can call ~c[(subtype-p boolean atom)] and because we
closed the subtype relation, we know that if T1 is a subtype
of T2 and T2 is a subtype of T3, then T1 is also a subtype of
T3 and we get back an affirmative answer, i.e ~c[t].
If the rule-classes is not explicitly given, the
default is to use (:tau-system).
~bv[]
Examples:
(defdata-subtype boolean symbol)
(defdata-subtype pos nat)
(defdata-subtype integer acl2-number)
~ev[]
~bv[]
Usage:
(defdata-subtype <Type-name1> <Type-name2>
&key rule-classes hints otf-flag doc)
~ev[]~/
"
`(with-output
:stack :push
:off :all
(make-event
`(with-output
:stack :pop
:off ,(cond ((get-acl2s-defdata-debug)
'acl2::proof-checker)
((get-acl2s-defdata-verbose)
'(warning! observation warning acl2::proof-checker))
(t
#!acl2(remove1-eq 'error *valid-output-names*))
)
:gag-mode ,(if (get-acl2s-defdata-debug) 'nil 't)
(make-event
(compute-defdata-relation ',',T1 ',',T2
',',hints ',',rule-classes ',',otf-flg ',',doc
'defdata::defdata-subtype (w state))
))
)))
;(compute-defdata-subtype ',',T1 ',',T2 state ',',hints ',',otf-flg ',',doc))))))
;Note: Its good practice to use ctx, otherwise u make copy-paste mistakes
(defmacro defdata-disjoint (T1 T2
&key (rule-classes '(:tau-system))
hints otf-flg doc)
(declare (xargs :guard (and (is-a-variablep T1)
(is-a-variablep T2)
(keyword-listp rule-classes))))
":Doc-Section DATA-DEFINITIONS
Specify a disjoint relation between two types~/
~c[(defdata-disjoint T1 T2)] tries to prove that the first
argument to it T1(which should be a ~st[supported type-name],
to check what we mean by that ~pl[data-definitions]) is
disjoint with the second argument T2. If the ACL2 is
successful in proving the conjecture using defthm:
~c[(implies (T1p x) (not (T2p x)))] then this information is
stored in a internal disjoint data type graph, where
we perform closure of the disjoint relation. Henceforth
one can just call ~c[(disjoint-p T1 T2)] to get an
affirmative which is just a lookup instead of calls
to the ACL2 theorem prover. And note that once you submit
~c[(defdata-disjoint acl2-number symbol)] successfully,
you can call ~c[(disjoint-p nat boolean)] and because we
closed the disjoint relation, we know that all subtypes
of disjoint types are pairwise disjoint and we get back
an affirmative , i.e ~c[t].
If the rule-classes is not explicitly given, the
default is to use (:tau-system).
~bv[]
Examples:
(defdata-disjoint cons atom)
(defdata-disjoint character string)
(defdata-disjoint integer complex :rule-classes nil)
~ev[]
~bv[]
Usage:
(defdata-disjoint <Type-name1> <Type-name2>
&key rule-classes hints otf-flag doc)
~ev[]~/
"
`(with-output
:stack :push
:off :all
(make-event
`(with-output
:stack :pop
:off ,(cond ((get-acl2s-defdata-debug)
'proof-checker)
((get-acl2s-defdata-verbose)
'(warning! observation warning proof-checker))
(t
#!acl2(remove1-eq 'error *valid-output-names*))
)
:gag-mode ,(if (get-acl2s-defdata-debug) 'nil 't)
(make-event
(compute-defdata-relation ',',T1 ',',T2
',',hints ',',rule-classes',',otf-flg ',',doc
'defdata::defdata-disjoint (w state))
))
)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;---------------------Debugging Space below ------------------------------------------;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
#|
;:set-ignore-ok t
(logic)
(trace$ list-calls-union-constituent-is-subtype-aux filter-typeName)
(defdata::cons-up-add-edge-union-constituent-is-subtype
'((UX (oneof (cons boolean nat)
nat
pos
(cons nat nat)
(oneof pos neg)))
(RX (oneof UX (cons boolean RX) string)))
'(UX RX) state)
(defun acl2::nth-integer (n)
(declare (xargs :guard (natp n)))
(let ((mag (floor n 2))
(sign (rem n 2)))
(if (= sign 0)
mag
(- -1 mag))))
(register-data-constructor (consp cons)
((allp car) (allp cdr))
:proper t)
(define-enumeration-type boolean '(t nil))
(set-verify-guards-eagerness 0)
(trace$ er-trans-datadef-as-enumerator-lst)
(DEFDATA::COMPUTE-DEFDATA '(WOO (list (ONEOF BOOLEAN 'OK)
(CONS 2 'AS)
(ONEOF (CONS integer integer)
(ONEOF integer integer)
woo)
))
'DEFDATA
(W STATE)
STATE)
(ER-TRANS-DATADEF-AS-ENUM-new-LST '((LIST (ONEOF BOOLEAN 'OK)
(CONS 2 'AS)
(ONEOF (CONS INTEGER INTEGER)
(ONEOF INTEGER INTEGER)
WOO)))
'NIL '(NTH-WOO)
0 'DEFDATA (w state)
state)
;given (/ (numerator denominator) rationalp) is constructor
;defs & theorems for this defdata:
(thm
(implies (and (integerp i)
(posp p))
(and
(rationalp (/ i p))
(integerp (numerator (/ i p)))
(posp (denominator (/ i p))))))
(defun my-rationalp (x)
(and (rationalp x)
(integerp (numerator x))
(posp (denominator x))))
(defun nth-my-rational (n)
(let* ((pair (split-nat n))
(a (nth-integer (car pair)))
(b (nth-pos (cdr pair))))
(/ a b)))
(defdata
(coo integer
:hints (:in-theory (set-difference-theories (current-theory :here) '(assoc))
:use ((:instance assoc-of-append (x a) (y b) (z c))))
:otf-flg t))
(defexec succ (x)
(declare (xargs :guard (natp x)))
(mbe :logic
(if (natp x)
(1+ x)
1)
:exec (1+ x)))
(defun pred (x)
(declare (xargs :guard (natp x)))
(if (zp x)
0
(1- x)))
(defthm succ-pred
(implies (posp x)
(equal (succ (pred x)) x)))
(register-data-constructor (posp succ)
(defdata
(my-rational (/ integer pos)))
(defdata
(tm (listof
(cons all
(listof tm-action))))
(tm-action (list (field cursym all)
(field nextstate all)
(field newsym all)
(field direction boolean))))
|#
|